In other languages:

User:Camponez/WIP: Difference between revisions

From Official Factorio Wiki
Jump to navigation Jump to search
(WIP)
(→‎Mecânica: update)
 
(33 intermediate revisions by the same user not shown)
Line 1: Line 1:
{{Languages}}
{{Languages}}
''Para o insersor comum amarelo, veja {{L|Inserter}}.''
'''Inserters''' são dispositivos que são usados para mover itens por curtas distâncias. Quando colocados, eles têm uma direção fixa. Eles podem mover itens por trás e colocá-los na frente deles. Ao fazer isso, eles podem mover itens de uma esteira de transporte para outra, mas também extrair itens de - e inserir itens em - máquinas ou dispositivos de armazenamento.
== Tipos de insersores ==
{| class="wikitable"
| {{Imagelink|Burner inserter}} || O único insersor que utiliza {{L|Fuel}}, e o mais lento.
|-
| {{Imagelink|Inserter}} || O insersor elétrico padrão.
|-
| {{Imagelink|Long handed inserter}} || Capaz de inserir e remover itens em grandes distâncias.
|-
| {{Imagelink|Fast inserter}} || Um insersor mais rápido.
|-
| {{Imagelink|Filter inserter}} || Uma variação do insersor rápido que possui filtro de tipos.
|-
| {{Imagelink|Stack inserter}} || Tão rápido quando o insersor rápido, mas ele move mais itens de uma só vez.
|-
| {{imagelink|Stack filter inserter}} || Variante do insersor de pilha que que pode filtrar itens por tipo.
|}
==Mecânica==
O que Insersores '''irá''':
* Pegar itens do chão, de [[Transport belts/pt-br|esteiras]] ou de qualquer objeto que tenha espaço de armazenamento, incluindo [[Chests/pt-br|baús]], [[Furnace/pt-br|fornalhas]] e {{L|Assembling machine}}.
* Colocar o item no chão, em uma esteira ou em qualquer objeto que tenha espaço de armazenamento.
* Funcionar em velocidades mais lentas quando estiver sem energia.
* Pegar quantos itens o seu [[Inserter capacity bonus (research)/pt-br|tamanho da pilha]] permitir de uma só vez, se eles não tiverem que esperar muito tempo para buscá-los.
Insersores '''não farão''':
* Pegar qualquer item que não pode ser inserido em uma entidade adjacente.
* Pegar qualquer item se a entidade adjacente for um blueprint.
* Pegar um item para colocar em uma entidade com o inventário cheio.
* Place more than one item at a time onto the same ground tile.
* Place items into an entity that can not hold them, for example due to [[Stack#Filtered_stacks|filtered]] or [[Stack#Stack_limitation|limited slots]].
* Fill up the entire target inventory of [[boiler]]s, [[nuclear reactor]]s, [[:Category:Producers|production building]]s, [[furnace]]s, and [[turret]]s.
If two or more inserters are picking up from the same tile, the inserter who can grab the items the fastest will grab them first. Besides faster inserters, this favors inserters taking from the inner lane of a transport belt.
=== Insertion limits ===
Depending on where an inserter is moving items, it does not always fill up the entire target inventory. This allows other inserters taking from the same transport belt to pick up their share of the items. For example, if a boiler has 5 or more items of fuel in it, an inserter will not insert additional fuel. This allows the other fuel to travel further down the transport belt. When the fuel drops below 5 items, the inserter will resume inserting fuel, up to the limit of 5 items.
{| class="wikitable"
! Entity !! Item type !! Automatic insertion limit
|-
| [[Boiler]]s, [[burner inserter]]s, [[furnace]]s, and [[nuclear reactor]]s || [[Fuel]] || align="center" | 5
|-
| [[Gun turret]]s || Bullet Magazines || align="center" | 10
|-
| [[Artillery turret]]s || [[Artillery shell]]s || align="center" | 5
|-
| [[Assembling machine]]s, [[furnace]]s, [[centrifuge]]s, [[chemical plant]]s, and [[Oil refinery|oil refineries]]|| Items needed for the recipe || The ingredients for 1 craft in addition to the ingredients for the number of crafts that can complete during one full inserter swing; but at least the ingredients for 2 crafts and at most the ingredients for 100 crafts.[https://forums.factorio.com/viewtopic.php?p=309796#p309796]
|-
| [[Lab]]s || [[Science pack]]s || Double the number of science packs needed for one research unit.
|}
An inserter that has a higher [[inserter capacity bonus (research)|inserter capacity bonus]] than 1 can overfill the target building, due to the inserter picking up a higher amount of items than needed. Overfilling can also occur if  multiple inserters are used to insert items into one building.
=== Inserters and transport belts ===
[[Transport belts]] have two lanes on which items can travel. Inserters only place items onto one side of the belt, either the far side from the inserter's perspective or if the belt is going the same or the opposite direction as the inserter the right side from the belt's perspective.
{|
| style="width:320px;" | [[File:Inserter_dropoff_locations.gif]] || [[File:Inserter_pickup_locations.gif]]
|-
| style="width:320px;" | Inserters place the item on the furthest lane. If a belt is in the same orientation as the inserter, the item will be placed on the right-hand lane, from the belt's perspective. In curves the inserter always places on the far side.
| style="width:320px;" | If the belt is perpendicular to the inserter, inserters '''prefer''' taking items from the nearest lane. If the nearest lane is empty, the inserter will take from the far lane. If the belt is the same/opposite orientation of the inserter or a curve, the inserter '''prefers''' taking from the left lane, from the belt's perspective. If the left lane is empty it will take from the right lane.
|}
=== Potential issues ===
Inserters may have problems picking up items:
* From very fast belts, because the items are moving too quickly.
* From the entry or exit of an underground belt (because the time they have to pick up is shorter)
* From turning belts if the item is on the inside of the corner
== Power usage ==
* Electric inserters drain energy even when they are not moving, as idle power
* The amount of energy used is the same for every turn
* The [[burner inserter]] does not drain energy when idle, but uses more energy when it is active.
== Inserter speed ==
[[File:all_inserter_speeds.gif|frame|right|Animation showing all inserter speeds at once.]]
{| class="wikitable"
! Type
! Rotation-speed (turns per [[Time#Ticks|tick]])<br/>Extension-speed ([[Map_structure#Tile|Tiles]] per Tick)
! Turns per [[Time#Seconds|Game-second]]
! Game-second per full turn
! Ticks per full turn
|- align="center"
| align="left"| {{Imagelink|Burner inserter|Burner inserter}} || 0.01<br/>0.0214 || 0.60 || 1.667 || 100
|- align="center"
| align="left"| {{Imagelink|Inserter|Inserter}} || 0.014<br/>0.03 || 0.83 || 1.2 || 72
|- align="center"
| align="left"| {{Imagelink|Long handed inserter|Long handed inserter}} || 0.02<br/>0.0457 || 1.2 || 0.833 || 50
|- align="center"
| align="left"| {{Imagelink|Fast inserter}}<br/>{{Imagelink|Filter inserter}}<br/>{{Imagelink|Stack inserter}}<br/>{{imagelink|Stack filter inserter}} || 0.04<br/>0.07 || 2.31 || 0.433 || 26
|-
|}
'''Note:''' These numbers come directly from the [https://github.com/wube/factorio-data/tree/master/base/prototypes/entity factorio-data github repository].
===Rotation Speed===
Convention: 2π rad = 100% of a circle rotation = '''1 turn''' (or one full rotation).
Note: an Inserter doesn't always need to make full turns. When grabbing from a transport belt, it is slightly faster when grabbing items from the closest lane.


O '''Sistema elétrico''' é usado para alimentar muitas máquinas diferentes; o jogo dificilmente pode ser jogado sem o uso de eletricidade. Cada máquina tem sua própria capacidade elétrica interna. Quando a energia é produzida, ela é distribuída igualmente em todas as máquinas da rede que precisam de eletricidade. A eletricidade é uma das duas maneiras pelas quais as máquinas podem ser alimentadas, outras sendo {{L|burner devices}} sem combustível {{L|fuel}}.
===Extension Speed===
The extension-speed is normally not visible (only when compared to other inserters), but there are measurable speed differences when taking - for example - from the near or the far side of a belt. Also Some mods can alter the pickup and drop locations of inserters, making this stat more relevant.


==Inserter Throughput==


== Mecânicas da rede ==
The following is based on experimental data from [https://docs.google.com/spreadsheets/d/1Q4hxL69qrK3qeEKU8aDkuwM3gJy6I2dJ4FYSs-FQUpI/edit?usp=sharing 0.18].   
=== Geradores ===
Most of the 0.18 experimental data was gathered using the following circuit blueprint to measure the exact tick difference between inserter swings. A lot of the data on this page (specifically the belt to chest data) relies heavily on the conditions of the setup on which the measurements are done. If your setup differs from the ones tested on this page, you can use the following blueprint to do the measurements yourself.


There are four ways to produce electricity. More details about each method are available on the {{L|Power production}} page.
{{BlueprintString|bp-string=0eNrtXO1u2zYUfRcB+zPIG79JGd2APMdQGIrNNMJs2ZDlYEHgd58kp7ZM+Uq8qtyWSFEghSPpijznfvGQzlv0uD7YXZHlZTR/i7LlNt9H83/eon32JU/X9e/K152N5lFW2k0UR3m6qT+lRVY+b2yZLWfL7eYxy9NyW0THOMrylf0vmtNjPGhjv0nX69k63exaD7Lj5ziyeZmVmT2NpPnwusgPm0dbVJYHxhBHu+2+enqb1y+uLM5MHL1W//E/ZPWaVVbY5emqiKNqumWxXS8e7XP6klVPV49czC6qy6vG1L6+8JQV+3LRmdRLVpSH6jeXeTV3zB7qWe1tbaM2tC/TGmNK4mi7s0V6GkP0Z/Xc9lDuDjjLx2Mz+Pw0l2Z4tP5R2FUbtKz6xKs7s2J5yMrmIz1+rp5lwM1UVpePNXkO7AwNu/4xsNt0+dxCHkdXm5lPn0ZQc3o7gh3ZYSeOvhTW5gM0sguNN2+nCiCSo4lUP3P8/Hb3+KEuQ/HVZcYHmGDd+LvFi0DzIj52XlOYvNawdAt2iYad/8prHuyw/qjRYJ5TuDzHBECsQhPLPnaeE/2McTrAhPTLc/o8yq+T7WeFvrNyvM3CU7YubQH0rBAwJGqsHWqgZ5RonXBFmRnoXiFr9MoaN4Iywlmro8UYY1fGEkIITTS9WOMoa7xlrZon14IaJs7GBMqYuBoa1UYmiWhZkyhr8pqDRGjKubhYUyhrqmWNUcGZSdrGNMqYvhqalNQkTBhytmZQ1syVNcWpNIJJdbaWoKwlV9ZY9U9y07JGCcrcw82pXqydgn5sL3udQRK/BGGwiZt87D6IUkwjxCHYEyzs9Fcf5MEO3Oi4vA11OpwBzNUu9z7KlV1mK1v08lYRdmJOXPOmbvP2bvLbSEvz1/I5y7+css3XWCH1h80uLZqBzqO/RxBSQ94Y3b0umjy2eCq2m0WWV1ai+VO63luIrdus8H59hHVIg+j1XPdRtKD1wftUM9CnJgNx5FmGKFrxOgcW9wqsqXh5j4AOM3Xn3Gbm97HRhYsfAma1W+HUudshU3mSdVG1qtkv/51l+d4W1cKgy5LuX098fdtmu7KL7dOihWBLgStsulo8pye8y2owFSplcbCXO5qLzW21pcZNx4MITlvcEtO7a6jkNGeGGYMg0EsvksnGrrLDZmbXlcWiio7ddm3h19PRmhtY+ZTf/M3V/EHOz2E4IgpJf2n7FKGiiPWHBTUQINoPEH1/QOikgNAEmrFBuQC944zZtDNWDukCjIIERfo9IeDTQqBdCCAVlxE/CFRwiQAinVG/GcsxqV9DL2UomO/paWJamInradD2GePY6ifR1U8MNEV+zQHzbA5EaDEh++FhIHXSDxAeWnFkYLwqlAuEUxyZcEiXULfKNIr0cIojky4EYCLwbJFYaImAg6R7dkR0RHGU0AkZTlAwB1Qcjetp0J4rp9jiSNHF0fRnf0/BgPt1MiS0kEgGWgeQOe6FBw2tNHIwWgXGAcKpjNylXEJaAZcYysMpjJy7CEDaAVfjNk7Y99s4OW9v/CR7Jn5bIr36u/LcGOF+nVt4XQsYkAYz4XD6B+7KOAqScXiC7B84XlkeOM6ptZ/0LAhGeico2ctd3AjwzCjFDIIi5X+HNGhZLRhGgSV3dFs5rfrotr0Cap4Exwiw90RATS26OwhA3ZQQGB+4Z+rSkyIgOssLSGoREuMD4XRTwu2mFFS+hMKIw+HkAeb6gAAR0BhNHlUTmFunBNTUCoOh4Z6OaKZ1RHc/TIEIJBgaKHJnxGkXIAlKEoz0GlA0uDRIqEOSFKO8hlMVmesDEvxuCcP4QDhVUbq9oYYaVMkxPhBOVZSdZQMYBQKjCoeTB7jrAxJaH0iJEeNxVdFtUCXUnkmFoSGcqijdtaIGk5HG0ECRWyLOIKCVkjQI1TWgYHBZUGBbkCBE13BqInc9QEEVQRGEBwRUEl2xQENLZUURHhBQRXRTsYbqgWKjVHdyLbqz7ym68w42U4vu9eFhFN6K4U5O95/DVsL3zxD4qveKI8TsgDK9G+cKjHMxys3pD3RzF5u/xn2XY7KdpSEfd7X6oW8o37r/JnUS4bvh9IrKlfI0JGQphdlXwJ0tBUHXGAn5ntt9ybS6lfAVUJXBSMj3ROBhWr/T3W0ETylPJRgxkwVTRpTx1ZQ1wYiZuFCEUNcUo1uFE4qS+ao2mmF0q3BCUdOudumpH2iOUVDCCUXNfIUsLTAKCu5QKaRbaYlYLocTiYr4rha1QiyXAwrEG4KJZ3Om9aiFBfuBCws2wfr5YeTq+ZtWu93TQHGvpf5Vdv3V9PjbliYac0YsoCSsbi+rK7iavxk6b/2Z0jh6scX+dPLSaMaUMYSQ4/F/sZ3s5g==}}


# {{L|Steam engine}}s – Most common, requires {{L|Boiler|Boilers}} (which consume {{L|Water}} and fuel).
===Chest to chest===
# {{L|Solar panel}}s – Free energy, but only works during daylight. Usually used with Accumulators.
# {{L|Accumulator}}s – Energy storage, see below
# {{L|Steam turbine}}s – High-power Steam engines. Used to generate power from a {{L|Nuclear reactor}}.


If a network consumes less power than is produced, its Steam Engines and Turbines will slow down so that no power is wasted.
'''Note:''' Experimental data from 0.18


=== Armazenamento ===
{| class="wikitable"
[[File:electrical-network-example-2.png|thumb|256px|Accumulator array consisting of 48 accumulators and a substation providing 240 MJ storage capacity.]]
! rowspan=2 | Type
! rowspan=2 | Arm cycles per second
! colspan=6 | Items/second at [[inserter capacity bonus (research)|capacity bonus]] level (stack size)
|-
! colspan=2 | No capacity bonus
! colspan=2 | Capacity bonus 2
! colspan=2 | Capacity bonus 7
|- align="center"
| align="left"| {{Imagelink|Burner inserter|Burner inserter}} || 0.60 || 0.60 || (1) || 1.20 || (2) || 1.80 || (3)
|- align="center"
| align="left"| {{Imagelink|Inserter|Inserter}} || 0.83 || 0.83 || (1) || 1.67 || (2) || 2.50 || (3)
|- align="center"
| align="left"| {{Imagelink|Long handed inserter|Long handed inserter}} || 1.20 || 1.20 || (1) || 2.40 || (2) || 3.60 || (3)
|- align="center"
| align="left"| {{Imagelink|Fast inserter|Fast inserter}}<br/>{{Imagelink|Filter inserter|Filter inserter}} || 2.31 || 2.31 || (1) || 4.62 || (2) || 6.92 || (3)
|- align="center"
| align="left"| {{Imagelink|Stack inserter|Stack inserter}}<br/>{{imagelink|stack_filter_inserter|Stack filter inserter}} || 2.31 || 4.62 || (2) || 9.23 || (4) || 27.69 || (12)
|-
|}


Energy can be stored in:
===Chest to belt===
* {{L|Fuel}}. It can be burnt to generate power.
* {{L|Accumulator}}s. Accumulators charge using excess power generated, and discharge when demand exceeds normal production.
* {{L|Steam}}. It can be created in {{L|boiler}}s or {{L|heat exchanger}}s and stored in the {{L|storage tank}}, allowing steam engines or steam turbines to operate on-demand.


==== Steam tanks as power storage ====
Throughput going from chest to belt depends on how full the belt is. An inserter will not put down an item on a belt that have items back-to-back (aka full compression) - it waits until there is a gap. However, if the gap is narrower than the item then the items upstream on the belt will stop to make room for the item being inserted. The direction of the belt compared to the inserter does not matter however.
A storage tank filled with {{L|heat exchanger}} 500°C steam stores around 2.4GJ; a storage tank filled with {{L|boiler}} 165°C Steam stores 750MJ.


There are several advantages to storing energy in storage tanks compared with storing it in an accumulator:
In these measurements inserters move items onto an empty belt. Values are given for the stack sizes at three different [[inserter capacity bonus (research)|capacity bonus]] levels.
* The energy density of a storage tank tile is much higher than it is with accumulators.
** For 165°C steam (produced with {{L|boiler|boilers}}), a single storage tank stores as much as 150 accumulators: <code>750MJ / 5MJ = 150</code>
** For 500°C steam (produced using {{L|Heat exchanger|heat exchangers}}), a single storage tank stores as much as 480 accumulators: <code>2400MJ / 5MJ = 480</code>
* A  {{L|nuclear reactor}} always fully burns a fuel cell, releasing 8GJ (or more with the multiple reactor bonus) even if power demand is lower. The excess energy can be stored as steam.
* A single {{L|accumulator}}'s maximum discharge rate is 300kW. On a very heavy load (e.g. laser turret firing), a small accumulator array may not discharge fast enough, causing power disruptions. A steam engine can produce 900kW of energy from the stored steam (3 times faster discharge rate), and a turbine can produce 5800kW (6.4 times faster discharge rate). In other words, a number of turbines or steam engines with steam storage can cope with much higher bursts than the same number of accumulators.
* Steam can be transferred via trains and then consumed remotely via turbines or steam engines. This essentially "transports electricity" using trains.


=== Distribuição ===
'''Note:''' Experimental data from 0.18
[[File:Electric-network-1.png|thumb|256px|Simple example of a small electric network.]]
Power poles are used to transmit energy. There are 4 types of power pole, each having differently configured properties. The properties are coverage area (area in which machines are placed to be affected by the pole) and wire reach (the distance across which a pole can connect with another pole). If two poles of different wire reach are to be connected, the smallest of either applies.


# {{L|Small electric pole}} – Second smallest coverage area, shortest cable length, available without research.
{| class="wikitable"
# {{L|Medium electric pole}} – Second largest coverage area, average cable length.
! rowspan=3 | Type
# {{L|Big electric pole}} – Smallest coverage area, longest cable length.
! colspan=12 | Items/second at [[inserter capacity bonus (research)|capacity bonus]] level (stack size)
# {{L|Substation}} – Largest coverage area, second longest cable length, but most expensive to build.
|-
! colspan=4 | No capacity bonus
! colspan=4 | Capacity bonus 2
! colspan=4 | Capacity bonus 7
|-
! [[File:Transport belt.png|link=Transport belt|32px]] || [[File:Fast transport belt.png|link=Fast transport belt|32px]] || [[File:Express transport belt.png|link=Express transport belt|32px]] ||
! [[File:Transport belt.png|link=Transport belt|32px]] || [[File:Fast transport belt.png|link=Fast transport belt|32px]] || [[File:Express transport belt.png|link=Express transport belt|32px]] ||
! [[File:Transport belt.png|link=Transport belt|32px]] || [[File:Fast transport belt.png|link=Fast transport belt|32px]] || [[File:Express transport belt.png|link=Express transport belt|32px]] ||
|- align="center"
| align="left"| {{Imagelink|Burner inserter|Burner inserter}} || 0.60 || 0.60 || 0.60 || (1) || 1.19 || 1.19 || 1.19 || (2) || 1.67 || 1.73 || 1.76 || (3)
|- align="center"
| align="left"| {{Imagelink|Inserter|Inserter}} || 0.83 || 0.83 || 0.83 || (1) || 1.64 || 1.64 || 1.64 || (2) || 2.25 || 2.37 || 2.43 || (3)
|- align="center"
| align="left"| {{Imagelink|Long handed inserter|Long handed inserter}} || 1.20 || 1.20 || 1.20 || (1) || 2.35 || 2.35 || 2.35 || (2) || 3.10 || 3.33 || 3.46 || (3)
|- align="center"
| align="left"| {{Imagelink|Fast inserter|Fast inserter}}<br/>{{Imagelink|Filter inserter|Filter inserter}} || 2.31 || 2.31 || 2.31 || (1) || 4.44 || 4.44 || 4.44 || (2) || 5.29 || 6.00 || 6.43 || (3)
|- align="center"
| align="left"| {{Imagelink|Stack inserter|Stack inserter}}<br/>{{imagelink|stack_filter_inserter|Stack filter inserter}} || 4.44 || 4.44 || 4.44 || (2) || 5.71 || 7.06 || 7.74 || (4) || 6.79 || 10.91 || 13.85 || (12)
|-
|}


=== Consumo ===
===Belt to chest (perpendicular)===
The majority of machines in Factorio consume electricity. There are two aspects to a machine's energy use.


* Energy consumption – The energy consumed by the machine while it is actively carrying out a process (crafting an item, moving an item, etc). If an electric network does not have enough power generation to supply all the machines in it, the electricity will be evenly spread across all machines in the network (based on each machine's demand), and all machines will slow down proportionally to the power available.
'''Note:''' Experimental data from 0.18
** For example: If an [[Assembling machine 3]] (210kW) and an {{L|Electric mining drill}} (90kW) are on a network (90+210 = 300kW), but the network only has 3 {{L|Solar panel}}s (3×60kW = 180kW) to power them, the Assembling machine and Mining drill will both run at 60% speed (180/300=0.6).
* Drain – The energy consumed by the machine whether it is active or not. Most machines consume a small amount of power just being connected to a network. This is usually negligible, but can become notable in small factories where power is limited. Drain is cumulative with energy cosumption - for example, an active [[Assembling machine 2]] will consume 155 kW (150kW energy consumption + 5kW drain).


=== Conexão ===
When picking items from a belt, many more factors come into play besides belt fullness:
{{L|File:Disconnect power pole.gif|frame|right|An individual connection is removed by redrawing the connection with copper cable.}}
A network is created by placing electrical generators (such as {{L|Steam engine}}s or {{L|Solar panel}}s) and electrical consumers, then ensuring a connection between the generator and consumer can be made using Distributors (such as {{L|Small electric pole}}s) that are connected together.  Electric poles cover differently sized areas depending on their type.  The area of coverage appears as a blue overlay around the pole.  If two poles are placed close enough, the poles connect automatically.  A building is connected if one tile of the building is in a covered area. Hovering the cursor over a pole reports the current satisfaction of power demands in that pole's network, and clicking on a pole will provide a detailed GUI about that pole's electric network. (See below)


* Use shift-click on a existing pole to remove all its connections to other poles.
* How fast the items move (i.e. if they are queued up on the belt or move at belt speed).
* Unconnected poles can be connected with a single {{L|copper cable}} dragging from pole to pole (Left click on the ''bottom'' of the pole with the cable in hand.)
* Whether the belt is perpendicular to the inserter or approaches it head on.
* Individual connections can be removed by "connecting" them with copper cable. This will not consume the cable.
* Whether items are on the near or far lane of a perpendicular belt.
* You can use place-key (default left mouse) while running/driving to auto-place poles at their greatest connectible distance while covering all unpowered entities on the way. This allows for complete efficiency when connecting long distances. If connecting over long distances, using {{L|Big electric pole}}s is recommended.
* Whether the belt turns or not, and whether the items are in the inner or outer side of the bend.
* If the belt is an underground entrance or exit. This shortens the time items are visible to the inserter for pickup.
* All sorts of intricate timing factors between the inserter and the items on the belt, since the game simulates the arm homing in on every item.


A newly-placed electric pole will be automatically connected to nearby poles according to the following rules:
The test setup used below is with an inserter taking items from a perpendicular belt with items on the far lane only. The belt is fully compressed and timings are both for items that move at full speed and queued up as much as possible. Values are given for the stack sizes at three different [[inserter capacity bonus (research)|capacity bonus]] levels.
# It will be connected to other available poles, starting with the closest one.
# It won't be connected to 2 poles connected to each other (it won't form a 3 pole triangle).
# It will not be connected to more than 5 other poles.


== Tela de informação da rede elétrica ==
{| class="wikitable"
[[File:Electric network info screen.png|thumb|400x400px|The Electric network info GUI]]
! rowspan=4 | Type
! colspan=15 | Items/second at [[inserter capacity bonus (research)|capacity bonus]] level (stack size)
|-
! colspan=5 | No capacity bonus
! colspan=5 | Capacity bonus 2
! colspan=5 | Capacity bonus 7
|-
! colspan=3 | Items at<br/>belt speed
! rowspan=2 | Items<br/>queued<br/>up
! rowspan=2 |
! colspan=3 | Items at<br/>belt speed
! rowspan=2 | Items<br/>queued<br/>up
! rowspan=2 |
! colspan=3 | Items at<br/>belt speed
! rowspan=2 | Items<br/>queued<br/>up
! rowspan=2 |
|-
! [[File:Transport belt.png|link=Transport belt|32px]] || [[File:Fast transport belt.png|link=Fast transport belt|32px]] || [[File:Express transport belt.png|link=Express transport belt|32px]]
! [[File:Transport belt.png|link=Transport belt|32px]] || [[File:Fast transport belt.png|link=Fast transport belt|32px]] || [[File:Express transport belt.png|link=Express transport belt|32px]]
! [[File:Transport belt.png|link=Transport belt|32px]] || [[File:Fast transport belt.png|link=Fast transport belt|32px]] || [[File:Express transport belt.png|link=Express transport belt|32px]]
|- align="center"
| align="left"| {{Imagelink|Burner inserter}} || 0.60 || '''0.65''' || 0.50 || 0.64 || (1) || 1.11 || '''1.20''' || 1.13 || 1.26 || (2) || 1.61 || 1.61 || '''1.65''' || 1.71 /<br/>1.73 /<br/>1.86 * || (3)
|- align="center"
| align="left"| {{Imagelink|Inserter}} || '''0.94''' || '''0.94''' || '''0.94''' || 0.88 || (1) || '''1.67''' || '''1.67''' || 1.50 || 1.74 || (2) || '''2.50''' || 2.25 || 2.33 || 2.37 /<br/>2.37 /<br/>2.54 * || (3)
|- align="center"
| align="left"| {{Imagelink|Long handed inserter}} || 1.18 || 1.18 || '''1.25''' || 1.20 || (1) || 2.20 || 2.31 || '''2.40''' || 2.40 || (2) || 3.21 || 3.21 || '''3.46''' || 3.40 || (3)
|- align="center"
| align="left"| {{Imagelink|Fast inserter}}<br/>{{Imagelink|Filter inserter}} || '''2.50''' || 2.31 || '''2.50''' || 2.50 || (1) || 4.50 || 4.29 || '''5.00''' || 4.80 || (2) || '''6.43''' || 6.00 || '''6.43''' || 6.43 || (3)
|- align="center"
| align="left"| {{Imagelink|Stack inserter}}<br/>{{imagelink|Stack filter inserter}} || 4.50 || 4.29 || '''5.00''' || 4.80 || (2) || 7.50 || 7.50 || '''8.00''' || 7.50 /<br/>8.57 /<br/>8.28 * || (4) || 7.50 || 11.25 || '''15.00''' || 7.50 /<br/>13.09 /<br/>15.32 * || (12)
|-
|}


The Electric network info GUI can be accessed by left-clicking any electric pole nearby.
<nowiki>*)</nowiki> Throughput for basic/fast/express belt.


'''You can see only the info from the electric network to which that pole is connected!''' Unlike the production-info (press P) the electric network info is not measured globally, but by network.
Since there are many more factors involved, these measurements exhibit a more complex pattern than chest-to-belt.


# '''Satisfaction''' – The current amount of energy consumed by the network. This bar should be full. If it is not full, it means that the machines connected to the network are consuming more power than is produced, and the bar will change color to yellow (>50%) or red (<50%).
* Boldface cells show for which belt each inserter has the best throughput on each bonus level when items move at belt speed. Higher speed belts mean that inserters have to work harder to catch the fast moving items. The effect is most noticeable for slower inserters and smaller stack sizes.
# '''Production''' – The current energy produced by the network. This bar should never be full. If it is full, it means that the machines connected to the network are consuming all available energy. The less full this bar is, the more surplus energy is available.
* When items are queued up the belt type hardly matters, so there is only a single column for that. The exceptions are the stack inserters - for basic transport belts it's the belt that sets the limit for stack sizes above 4, and there is also a notable difference between fast and express belts.
# '''{{L|Accumulator|Accumulator}} capacity''' – How much energy is currently held inside of the accumulators connected to your network.  Measured in {{L|Units|joule}}s; 1 Joule = 1 Watt * 1 second (see also {{L|wikipedia:Joule}}). This bar should be able to fill fully before emptying again.
# '''Timespan''' - Set the {{L|Time|time}} span for the graphs below. "5s" means over the last 5 seconds.
# '''Detailed Consumption''' – A list of consumers from highest power consumption to lowest. In the picture example, 210 {{L|Electric mining drill|drills}} consume the most power, at 2.2 MW.
# '''Detailed Production''' – A list of producers from highest power production to lowest. In the picture example, 26 {{L|Steam engine}}s produce all the electricity in the factory.
# '''Consumption Graph''' – Shows the consumption of the different parts of the network over time.
# '''Production Graph''' – Shows the production of the different producers of the network over time.


Note that the timeframe influences the shown detailed production/consumption: the displayed watts is the total average power production or consumption over the full time. Setting longer timeframes also allows seeing the past production or consumption of machines even if they are not currently connected to the network.
=== Belt to Chest (facing inserter) ===


== Propriedades da rede ==
'''Note:''' Experimental data from 0.18


Electricity is provided on a priority basis. The demand for energy is satisfied by generators in following order:
When picking up items from a belt facing the inserter, there are multiple small differences between different setups. The following throughput tests are performed with [[express transport belt]]s and [[stack inserter]]s with the maximum [[inserter capacity bonus (research)|capacity bonus]].
Each setup in the following picture shows the amount of ticks per cycle of the inserter and the amount of items per second the inserter moves. These measurements are consistent in all orientations of the setup.


* {{L|Solar panel}}s – Top priority; they always work at maximum performance available, unless they can cover all demand of the network, in which case they match demand.
[[File:Inserter_belt_to_chest_throughput.png|900px]]
* {{L|Steam engine}}s and {{L|Steam turbine}}s – They match whatever demand solar panels cannot satisfy; note that Engines and Turbines do have the same priority, leftover demand is equally divided among both.
* {{L|Accumulator}} – Last resort. They are only discharged when demand cannot be met by other means. They are also only charged when all demand is met, and there is yet more power available.


There may be situations where different behaviour is desired (such as solar panels combined with accumulators for night-and-day delivery), in which case clever use of a  {{L|power switch}} and the {{L|circuit network}} is in order.
==See Also==
* [[Electric system]]
* [[Belt transport system]]
* [[Inserter capacity bonus (research)]]: Inserter moves more than an item per turn.


== See also ==
{{C|Inserters}}
* {{L|Tutorial:Producing power from oil|Produção de energia por petróleo}}
* {{L|Power production}}
* {{L|Fluid system}}
* {{L|Units}}

Latest revision as of 09:10, 18 September 2020

Para o insersor comum amarelo, veja Inserter.

Inserters são dispositivos que são usados para mover itens por curtas distâncias. Quando colocados, eles têm uma direção fixa. Eles podem mover itens por trás e colocá-los na frente deles. Ao fazer isso, eles podem mover itens de uma esteira de transporte para outra, mas também extrair itens de - e inserir itens em - máquinas ou dispositivos de armazenamento.

Tipos de insersores

Burner inserter.png
Burner inserter
O único insersor que utiliza Fuel, e o mais lento.
Inserter.png
Inserter
O insersor elétrico padrão.
Long handed inserter.png
Long handed inserter
Capaz de inserir e remover itens em grandes distâncias.
Fast inserter.png
Fast inserter
Um insersor mais rápido.
Filter inserter.png
Filter inserter
Uma variação do insersor rápido que possui filtro de tipos.
Stack inserter.png
Stack inserter
Tão rápido quando o insersor rápido, mas ele move mais itens de uma só vez.
Stack filter inserter.png
Stack filter inserter
Variante do insersor de pilha que que pode filtrar itens por tipo.

Mecânica

O que Insersores irá:

  • Pegar itens do chão, de esteiras ou de qualquer objeto que tenha espaço de armazenamento, incluindo baús, fornalhas e Assembling machine.
  • Colocar o item no chão, em uma esteira ou em qualquer objeto que tenha espaço de armazenamento.
  • Funcionar em velocidades mais lentas quando estiver sem energia.
  • Pegar quantos itens o seu tamanho da pilha permitir de uma só vez, se eles não tiverem que esperar muito tempo para buscá-los.

Insersores não farão:

  • Pegar qualquer item que não pode ser inserido em uma entidade adjacente.
  • Pegar qualquer item se a entidade adjacente for um blueprint.
  • Pegar um item para colocar em uma entidade com o inventário cheio.
  • Place more than one item at a time onto the same ground tile.
  • Place items into an entity that can not hold them, for example due to filtered or limited slots.
  • Fill up the entire target inventory of boilers, nuclear reactors, production buildings, furnaces, and turrets.

If two or more inserters are picking up from the same tile, the inserter who can grab the items the fastest will grab them first. Besides faster inserters, this favors inserters taking from the inner lane of a transport belt.

Insertion limits

Depending on where an inserter is moving items, it does not always fill up the entire target inventory. This allows other inserters taking from the same transport belt to pick up their share of the items. For example, if a boiler has 5 or more items of fuel in it, an inserter will not insert additional fuel. This allows the other fuel to travel further down the transport belt. When the fuel drops below 5 items, the inserter will resume inserting fuel, up to the limit of 5 items.

Entity Item type Automatic insertion limit
Boilers, burner inserters, furnaces, and nuclear reactors Fuel 5
Gun turrets Bullet Magazines 10
Artillery turrets Artillery shells 5
Assembling machines, furnaces, centrifuges, chemical plants, and oil refineries Items needed for the recipe The ingredients for 1 craft in addition to the ingredients for the number of crafts that can complete during one full inserter swing; but at least the ingredients for 2 crafts and at most the ingredients for 100 crafts.[1]
Labs Science packs Double the number of science packs needed for one research unit.

An inserter that has a higher inserter capacity bonus than 1 can overfill the target building, due to the inserter picking up a higher amount of items than needed. Overfilling can also occur if multiple inserters are used to insert items into one building.

Inserters and transport belts

Transport belts have two lanes on which items can travel. Inserters only place items onto one side of the belt, either the far side from the inserter's perspective or if the belt is going the same or the opposite direction as the inserter the right side from the belt's perspective.

Inserter dropoff locations.gif Inserter pickup locations.gif
Inserters place the item on the furthest lane. If a belt is in the same orientation as the inserter, the item will be placed on the right-hand lane, from the belt's perspective. In curves the inserter always places on the far side. If the belt is perpendicular to the inserter, inserters prefer taking items from the nearest lane. If the nearest lane is empty, the inserter will take from the far lane. If the belt is the same/opposite orientation of the inserter or a curve, the inserter prefers taking from the left lane, from the belt's perspective. If the left lane is empty it will take from the right lane.

Potential issues

Inserters may have problems picking up items:

  • From very fast belts, because the items are moving too quickly.
  • From the entry or exit of an underground belt (because the time they have to pick up is shorter)
  • From turning belts if the item is on the inside of the corner

Power usage

  • Electric inserters drain energy even when they are not moving, as idle power
  • The amount of energy used is the same for every turn
  • The burner inserter does not drain energy when idle, but uses more energy when it is active.

Inserter speed

Animation showing all inserter speeds at once.
Type Rotation-speed (turns per tick)
Extension-speed (Tiles per Tick)
Turns per Game-second Game-second per full turn Ticks per full turn
Burner inserter.png
Burner inserter
0.01
0.0214
0.60 1.667 100
Inserter.png
Inserter
0.014
0.03
0.83 1.2 72
Long handed inserter.png
Long handed inserter
0.02
0.0457
1.2 0.833 50
Fast inserter.png
Fast inserter
Filter inserter.png
Filter inserter
Stack inserter.png
Stack inserter
Stack filter inserter.png
Stack filter inserter
0.04
0.07
2.31 0.433 26

Note: These numbers come directly from the factorio-data github repository.

Rotation Speed

Convention: 2π rad = 100% of a circle rotation = 1 turn (or one full rotation).

Note: an Inserter doesn't always need to make full turns. When grabbing from a transport belt, it is slightly faster when grabbing items from the closest lane.

Extension Speed

The extension-speed is normally not visible (only when compared to other inserters), but there are measurable speed differences when taking - for example - from the near or the far side of a belt. Also Some mods can alter the pickup and drop locations of inserters, making this stat more relevant.

Inserter Throughput

The following is based on experimental data from 0.18. Most of the 0.18 experimental data was gathered using the following circuit blueprint to measure the exact tick difference between inserter swings. A lot of the data on this page (specifically the belt to chest data) relies heavily on the conditions of the setup on which the measurements are done. If your setup differs from the ones tested on this page, you can use the following blueprint to do the measurements yourself.

Blueprint.png  Copy blueprint string

0eNrtXO1u2zYUfRcB+zPIG79JGd2APMdQGIrNNMJs2ZDlYEHgd58kp7ZM+Uq8qtyWSFEghSPpijznfvGQzlv0uD7YXZHlZTR/i7LlNt9H83/eon32JU/X9e/K152N5lFW2k0UR3m6qT+lRVY+b2yZLWfL7eYxy9NyW0THOMrylf0vmtNjPGhjv0nX69k63exaD7Lj5ziyeZmVmT2NpPnwusgPm0dbVJYHxhBHu+2+enqb1y+uLM5MHL1W//E/ZPWaVVbY5emqiKNqumWxXS8e7XP6klVPV49czC6qy6vG1L6+8JQV+3LRmdRLVpSH6jeXeTV3zB7qWe1tbaM2tC/TGmNK4mi7s0V6GkP0Z/Xc9lDuDjjLx2Mz+Pw0l2Z4tP5R2FUbtKz6xKs7s2J5yMrmIz1+rp5lwM1UVpePNXkO7AwNu/4xsNt0+dxCHkdXm5lPn0ZQc3o7gh3ZYSeOvhTW5gM0sguNN2+nCiCSo4lUP3P8/Hb3+KEuQ/HVZcYHmGDd+LvFi0DzIj52XlOYvNawdAt2iYad/8prHuyw/qjRYJ5TuDzHBECsQhPLPnaeE/2McTrAhPTLc/o8yq+T7WeFvrNyvM3CU7YubQH0rBAwJGqsHWqgZ5RonXBFmRnoXiFr9MoaN4Iywlmro8UYY1fGEkIITTS9WOMoa7xlrZon14IaJs7GBMqYuBoa1UYmiWhZkyhr8pqDRGjKubhYUyhrqmWNUcGZSdrGNMqYvhqalNQkTBhytmZQ1syVNcWpNIJJdbaWoKwlV9ZY9U9y07JGCcrcw82pXqydgn5sL3udQRK/BGGwiZt87D6IUkwjxCHYEyzs9Fcf5MEO3Oi4vA11OpwBzNUu9z7KlV1mK1v08lYRdmJOXPOmbvP2bvLbSEvz1/I5y7+css3XWCH1h80uLZqBzqO/RxBSQ94Y3b0umjy2eCq2m0WWV1ai+VO63luIrdus8H59hHVIg+j1XPdRtKD1wftUM9CnJgNx5FmGKFrxOgcW9wqsqXh5j4AOM3Xn3Gbm97HRhYsfAma1W+HUudshU3mSdVG1qtkv/51l+d4W1cKgy5LuX098fdtmu7KL7dOihWBLgStsulo8pye8y2owFSplcbCXO5qLzW21pcZNx4MITlvcEtO7a6jkNGeGGYMg0EsvksnGrrLDZmbXlcWiio7ddm3h19PRmhtY+ZTf/M3V/EHOz2E4IgpJf2n7FKGiiPWHBTUQINoPEH1/QOikgNAEmrFBuQC944zZtDNWDukCjIIERfo9IeDTQqBdCCAVlxE/CFRwiQAinVG/GcsxqV9DL2UomO/paWJamInradD2GePY6ifR1U8MNEV+zQHzbA5EaDEh++FhIHXSDxAeWnFkYLwqlAuEUxyZcEiXULfKNIr0cIojky4EYCLwbJFYaImAg6R7dkR0RHGU0AkZTlAwB1Qcjetp0J4rp9jiSNHF0fRnf0/BgPt1MiS0kEgGWgeQOe6FBw2tNHIwWgXGAcKpjNylXEJaAZcYysMpjJy7CEDaAVfjNk7Y99s4OW9v/CR7Jn5bIr36u/LcGOF+nVt4XQsYkAYz4XD6B+7KOAqScXiC7B84XlkeOM6ptZ/0LAhGeico2ctd3AjwzCjFDIIi5X+HNGhZLRhGgSV3dFs5rfrotr0Cap4Exwiw90RATS26OwhA3ZQQGB+4Z+rSkyIgOssLSGoREuMD4XRTwu2mFFS+hMKIw+HkAeb6gAAR0BhNHlUTmFunBNTUCoOh4Z6OaKZ1RHc/TIEIJBgaKHJnxGkXIAlKEoz0GlA0uDRIqEOSFKO8hlMVmesDEvxuCcP4QDhVUbq9oYYaVMkxPhBOVZSdZQMYBQKjCoeTB7jrAxJaH0iJEeNxVdFtUCXUnkmFoSGcqijdtaIGk5HG0ECRWyLOIKCVkjQI1TWgYHBZUGBbkCBE13BqInc9QEEVQRGEBwRUEl2xQENLZUURHhBQRXRTsYbqgWKjVHdyLbqz7ym68w42U4vu9eFhFN6K4U5O95/DVsL3zxD4qveKI8TsgDK9G+cKjHMxys3pD3RzF5u/xn2XY7KdpSEfd7X6oW8o37r/JnUS4bvh9IrKlfI0JGQphdlXwJ0tBUHXGAn5ntt9ybS6lfAVUJXBSMj3ROBhWr/T3W0ETylPJRgxkwVTRpTx1ZQ1wYiZuFCEUNcUo1uFE4qS+ao2mmF0q3BCUdOudumpH2iOUVDCCUXNfIUsLTAKCu5QKaRbaYlYLocTiYr4rha1QiyXAwrEG4KJZ3Om9aiFBfuBCws2wfr5YeTq+ZtWu93TQHGvpf5Vdv3V9PjbliYac0YsoCSsbi+rK7iavxk6b/2Z0jh6scX+dPLSaMaUMYSQ4/F/sZ3s5g==

Chest to chest

Note: Experimental data from 0.18

Type Arm cycles per second Items/second at capacity bonus level (stack size)
No capacity bonus Capacity bonus 2 Capacity bonus 7
Burner inserter.png
Burner inserter
0.60 0.60 (1) 1.20 (2) 1.80 (3)
Inserter.png
Inserter
0.83 0.83 (1) 1.67 (2) 2.50 (3)
Long handed inserter.png
Long handed inserter
1.20 1.20 (1) 2.40 (2) 3.60 (3)
Fast inserter.png
Fast inserter
Filter inserter.png
Filter inserter
2.31 2.31 (1) 4.62 (2) 6.92 (3)
Stack inserter.png
Stack inserter
Stack filter inserter.png
Stack filter inserter
2.31 4.62 (2) 9.23 (4) 27.69 (12)

Chest to belt

Throughput going from chest to belt depends on how full the belt is. An inserter will not put down an item on a belt that have items back-to-back (aka full compression) - it waits until there is a gap. However, if the gap is narrower than the item then the items upstream on the belt will stop to make room for the item being inserted. The direction of the belt compared to the inserter does not matter however.

In these measurements inserters move items onto an empty belt. Values are given for the stack sizes at three different capacity bonus levels.

Note: Experimental data from 0.18

Type Items/second at capacity bonus level (stack size)
No capacity bonus Capacity bonus 2 Capacity bonus 7
Transport belt.png Fast transport belt.png Express transport belt.png Transport belt.png Fast transport belt.png Express transport belt.png Transport belt.png Fast transport belt.png Express transport belt.png
Burner inserter.png
Burner inserter
0.60 0.60 0.60 (1) 1.19 1.19 1.19 (2) 1.67 1.73 1.76 (3)
Inserter.png
Inserter
0.83 0.83 0.83 (1) 1.64 1.64 1.64 (2) 2.25 2.37 2.43 (3)
Long handed inserter.png
Long handed inserter
1.20 1.20 1.20 (1) 2.35 2.35 2.35 (2) 3.10 3.33 3.46 (3)
Fast inserter.png
Fast inserter
Filter inserter.png
Filter inserter
2.31 2.31 2.31 (1) 4.44 4.44 4.44 (2) 5.29 6.00 6.43 (3)
Stack inserter.png
Stack inserter
Stack filter inserter.png
Stack filter inserter
4.44 4.44 4.44 (2) 5.71 7.06 7.74 (4) 6.79 10.91 13.85 (12)

Belt to chest (perpendicular)

Note: Experimental data from 0.18

When picking items from a belt, many more factors come into play besides belt fullness:

  • How fast the items move (i.e. if they are queued up on the belt or move at belt speed).
  • Whether the belt is perpendicular to the inserter or approaches it head on.
  • Whether items are on the near or far lane of a perpendicular belt.
  • Whether the belt turns or not, and whether the items are in the inner or outer side of the bend.
  • If the belt is an underground entrance or exit. This shortens the time items are visible to the inserter for pickup.
  • All sorts of intricate timing factors between the inserter and the items on the belt, since the game simulates the arm homing in on every item.

The test setup used below is with an inserter taking items from a perpendicular belt with items on the far lane only. The belt is fully compressed and timings are both for items that move at full speed and queued up as much as possible. Values are given for the stack sizes at three different capacity bonus levels.

Type Items/second at capacity bonus level (stack size)
No capacity bonus Capacity bonus 2 Capacity bonus 7
Items at
belt speed
Items
queued
up
Items at
belt speed
Items
queued
up
Items at
belt speed
Items
queued
up
Transport belt.png Fast transport belt.png Express transport belt.png Transport belt.png Fast transport belt.png Express transport belt.png Transport belt.png Fast transport belt.png Express transport belt.png
Burner inserter.png
Burner inserter
0.60 0.65 0.50 0.64 (1) 1.11 1.20 1.13 1.26 (2) 1.61 1.61 1.65 1.71 /
1.73 /
1.86 *
(3)
Inserter.png
Inserter
0.94 0.94 0.94 0.88 (1) 1.67 1.67 1.50 1.74 (2) 2.50 2.25 2.33 2.37 /
2.37 /
2.54 *
(3)
Long handed inserter.png
Long handed inserter
1.18 1.18 1.25 1.20 (1) 2.20 2.31 2.40 2.40 (2) 3.21 3.21 3.46 3.40 (3)
Fast inserter.png
Fast inserter
Filter inserter.png
Filter inserter
2.50 2.31 2.50 2.50 (1) 4.50 4.29 5.00 4.80 (2) 6.43 6.00 6.43 6.43 (3)
Stack inserter.png
Stack inserter
Stack filter inserter.png
Stack filter inserter
4.50 4.29 5.00 4.80 (2) 7.50 7.50 8.00 7.50 /
8.57 /
8.28 *
(4) 7.50 11.25 15.00 7.50 /
13.09 /
15.32 *
(12)

*) Throughput for basic/fast/express belt.

Since there are many more factors involved, these measurements exhibit a more complex pattern than chest-to-belt.

  • Boldface cells show for which belt each inserter has the best throughput on each bonus level when items move at belt speed. Higher speed belts mean that inserters have to work harder to catch the fast moving items. The effect is most noticeable for slower inserters and smaller stack sizes.
  • When items are queued up the belt type hardly matters, so there is only a single column for that. The exceptions are the stack inserters - for basic transport belts it's the belt that sets the limit for stack sizes above 4, and there is also a notable difference between fast and express belts.

Belt to Chest (facing inserter)

Note: Experimental data from 0.18

When picking up items from a belt facing the inserter, there are multiple small differences between different setups. The following throughput tests are performed with express transport belts and stack inserters with the maximum capacity bonus. Each setup in the following picture shows the amount of ticks per cycle of the inserter and the amount of items per second the inserter moves. These measurements are consistent in all orientations of the setup.

Inserter belt to chest throughput.png

See Also