In other languages: Deutsch Nederlands Polska Русский 中文

Balancer mechanics: Difference between revisions

From Official Factorio Wiki
Jump to navigation Jump to search
m (→‎Throughput: fixed gif)
m (→‎Belt Balancers: formatting)
Line 44: Line 44:
These belt balancers are all tested to be input balanced and output balanced. Remember, belt balancers do not balance the individual belt lanes!  Throughput under full load is 100% and min throughput with blocked in- and outputs is also tested, it is noted when that is under 100%. Tests are done using [https://forums.factorio.com/viewtopic.php?f=69&t=34182 this handy tool] by d4rkpl4y3r on the Factorio Forums. When there are multiple versions of balancers that have the same stats but different sizes, the balancer with the smallest footprint is shown.
These belt balancers are all tested to be input balanced and output balanced. Remember, belt balancers do not balance the individual belt lanes!  Throughput under full load is 100% and min throughput with blocked in- and outputs is also tested, it is noted when that is under 100%. Tests are done using [https://forums.factorio.com/viewtopic.php?f=69&t=34182 this handy tool] by d4rkpl4y3r on the Factorio Forums. When there are multiple versions of balancers that have the same stats but different sizes, the balancer with the smallest footprint is shown.


 
Blueprint book of all balancers from 1 → 1 to 8 → 8 :
<div class="toccolours mw-collapsible mw-collapsed">
{{BlueprintString|bp-string=0eNrtneuuHEd2rF9lwN/sQa5LXkpvcnBwIEgzhE1YQwoUZXhg9LsfacRNymZV5srISJJS85chjZW7+lJdmSsivvjvZ9//8POLH9+8fPX22+9fv/6PZ9/894d/89Ozb/7v7/7x1//t5d9ev/rtX//08t9efffDr//u7T9/fPHsm2cv3774x7Pnz159949f/+nFf/345sVPP93evvnu1U8/vn7z9vb9ix/ePrs/f/by1d9f/Nezb+T+/54/e/Hq7cu3L1/8tuK//uGf3776+R/fv3jzy//DaK3nz358/dMv//nrV79exS9LpufP/vnsm5vc788/Wk3B1U4XM3CxdP/1Rf/rjfrmd+/r82c/fPfLf/bLv5Nv5dvvv/vhu1d/++XPPH/2ny/e/PSvNYq7ek0lefvwDqZfr2zbp/M8vMhPP/7w8u3bXy74w3+uX/qHe5POcnb9Ej9eKP01P322H6/k6IXJ+Jui8W+KPNQ35emz1dhXpfPZyrvP9kb6Fbhp58rmvyvvv8PPn/395ZsXf/vtfyona2f0dju90kK9eSv6Aaf/+br1ZO2GfNqnV3mgH/bp74Ik8MM+X03A1f7XN8fP1p65Yd495f6ax5+MGPqxn34lxdHP53y5DL6jOr4XBb19Plp79ISw+BNC158QJz/uM8+GywfMjieETj0hVn4rjfv4gh8Sp6tl3sOwzPxMdFeqtN1Xw/f8o1vL47eWPdbm692tZdRby7i3llFvLbtTdly9N65wf+IqvJzcV3dZ729+jW2z0J+Rky1W78ftt5U+2rqU2HbremXpvlxRfFs53rrBB5TIvtDX94WFs/O6xTezBbwrU+DCK3VL38ArPb8XDs4B4ex1a0I2ETr+sBQ++dv4+KHooyiytgG/D+dbUQe/BedPX/RQY+P9UI7vh/zrUWNhbmlTZ43Onajdp6dTD0GZewgq0H6DNHzqfZ6Nejo7kG0GYS+kE09rQb/BibUdsvDD34C9ZWINmyS8j8jIt/v8Yy/4UGw8wKvoZxVZvMEzMs7258OscfTkK/EnX36sSYBRJwHdwcJnHwUk6ihAqKOA3hs3fxP3PtXG3c8c0HhSSYLL06XJfXUG8PTVjT1SFRmBnL9o4+riwJn/hh76rxfW/msuvF1TxTc3491II211lPTA0+jimjbufvBDv2w89Ad2l2rw+Gf8pjg8toqNAcZ3yLnthqRknn5WFVZgz1ZDx2mBDWCNbwDLY40+/IveANoXvAG8fck7QKHuAHsfw9QG0GY3gPhmUhb0M2QDuLZVNd6G0qnOL1zrucny3m+wjYQHg0KSc87NfcHdXuCrfb43SKwZmQptjKW6cXzT4k/v+qca36Cmmu1e67hDmvfcHjp+dMaY374a8//MxnyevTrwtZtw+R8PajQbn80XVNvh4iuj5+FecPc5BPZpFeqpoVJPNI1mzzpY+3wnjaQ1Gnw4OaL8/Mut+Obf3rz+5f8Of3ufP93hr39+++PPv/4QUI4p4dwGdmYR6pklkY4sOndiWZjsnRxawh/67z7zl6+uPvLGzWwcG8exiRWyoMyo4246pXnHjOkg/KM40XQm9CLpqxXty8hFciMviRR5SZOJlxWzV6UeSBrtoHTsO9pMZGjkz5VgDjyV7fwAMn5I64ISsuOwowuHHXhC/9kVlzR12kHn8Y16Cjuop7ApwUXZektPVcIFlsRy2Vh8uO+kU2LQdxP4aTo/4mrg/FDIeg8vKgobTm/cwE2C/DfjD00Gn9n1OX9KyLkyupHcOGF3FXD46UmowOkn7nXWjO8P5Gp70Pk8C5WUoJWG2FDueEEPpofcEtOPZALsAc4PWwo7m4aPB8NHCOOdpIN3qMxRMHQmmib6WBKKnx4y9AHsWl3feeYdRAr3IFKpB5FGO4gc1IMIoIx0TyJCDfkJum+5ReBAht7FCcrsR38iaP6tCR/cVMzTZuIGlWaYwiUR2sGh67/Y6efiOdimVI+pM8ZnPwfEjywZvTkjb3DBAyEcc348vKLU7Kce1EOFJZqt0YSzuy6cU0FHTTD7VHv1iTCt2EOmaVkcifjW//Pv1ZXlafq6V/8D7tVh1UC5qsEffGfO2juXrXv+rzvzL35nvuJ3m0JjPW0ZQxt937l7ztzdc8FVN50W3bRyp+qNl+s5qJtUXBbTeVXMhCou6MajgO2KPutM9Fn8UdJT/RyqcmPUXzfnXzfnXzfnax4cqusmtMvNvF3ufkvNkg+m0Zh7x85dbuLucoW75VLelsvwbctoMzCRpJb8kIVEAQ+s7sxBGvXhspBNBPqKxuz20DmxsKKgSsbqA1VG4d8/FmefRdZLc2A9IltVqSkLHLDPwsrKVFIRtJjhewwWWqW3Wtv1RLMZ5IOUry0va1Ey/ZK5rgEOQMbjYMPfrcLta6nUny3ynH1hzD7+/U9wFhxJ3EPdIs55bq1E7afiBGNQgFOn59jheZ0Vm7orVR60vXEM3c45ROtC4j76PYqwBxR+SNmd2//COVa/r6rhhu3HB8xt0XubaiTeC1P73BueeIpOIz+h27dBcTZM6HozdbpeqACAunGf1nCj+XDtY2vKNHEjsbJzEiIL91uKYG5WsPlIoDd894WuPpM20MrsLk5QoUwHfTNhAod3VDQjUHijrwk3Vi9DWLWLE1JezhPCOLIK8iTcP7hAdaQ48MO1llr32UcU7qkwlh2/s423RN14w64euzNN+DZnm7cp5lV7yEGl8waV5AIqpw4qnca8MirzyklzSAuLcY3rCDl4pJQSGZolLt4Nl9UuNkHKY8mKcRVEp4LZIEaODD74GUTOMAkpYOY1nIQcL95ITVmsMqvenjiRurGCaNCpo+mktXsBwUudYrLCsr39c2ZifCELvvQ/pg5yp3L2/rrqx79o9lXORj3cxAvs2jvDJuMqA6Y0fcm4soA59XSSWeKXFVxSOFmt7hM/bKO2ZugNo7OnvRlu6vGQIem8fNp77173OxWDmqllJOfLYTUPTpVeMlV6yVT4qVPhp75FXbHTxZ10sttDRw2f7uInZwMNJnE9M/YXMtD2LLvi1HE9UrgxJ4GaVey+2lnXHx9owqNE49E6lx2miHSJo8BpZGKnQlHTzsh1gmhIkSckDYXUO4PvLIrUg5XGMm5gyoTEk3KODHMO7/XYES/8dAPGwuZr6IDRL4Zl/FEaWr8wZ0JWqSH8RsURHMyUgyPmysG37PJDcuGcks9+glxZKLGTtQ0+gZ+t5rjwPfzZ8IwuHjhueEEmWOdOQTgqcC5rQvCQ86UO5jAso3Tvc71VgH3y+XWhYJDz60JvEA8kNh3e2do8xD7DBS/nExP0sXS+GjrnyGOL9QTMXNPXSNp6DzHJ7ZGoqTSZYq6sgDUKFSBSd3qYGy92eHzaWpzEO46K8ILd+kl7ZqYqXwdwGadSn6emfzN0amT4Z1P1r8SqqEadc0zN/wZ24rSxa0morgNlRfJhrnnaMtcLH9E0bwwgbi82InMTPy3VXKjdRopJ1xN8b5WHlK6/zO1rd3P9ufev3OygUfevSqIG3pS/YTXihjVOq0ZACnAV9WabckD9jG5QSVE3ZH6f8D17wauQyB7lLzL3d653FpIr2aeY4IHfFiGREnq0GNxknIImY5iNmPdlW7UwHa9TnZsznt+2z/OrB67CUoN/yvUQKzX5t6eUsyd6Osu1GhKTNx0rJjjk+pgVn5l0rOgZbP9ortgVK2uhWlnhcwXJGNv7VA+Ife93KmWEwCP/cFJwlu1VwzxbIRN8pg4QfYu3cA/cUvBpABcR0rfw44cD4x4ONvHJb5OAclgrw+jkhHqggSvYqbxkZWhAhTS1njsabG3mRNOtEbOjHjRvZWCohZ8oaKnEnp1QmUIUfIaQO8uUKv1vBdehKv3vRMdvOx/HD2HorXL0O1LI0ag+1t653RN+0B4bQIVnfFTqfMGph3ZHdn/nLzNzBhVBGyoU5HWOL9WiIWFvnJGIc1yrPT9thp9ZUd9q7FvqJO+qUL2reu5dHQ2TJnpslNBBfTIHmhkjXc6iNgyT0lSvHVppZbzzhLPyTtwC0ELdGlbmXm4hA9O/r3ymTUP96321bP3Q5Zure5tuvLfg+71Qb9PPfGP17vlj3206AXHX/KAsybHaSeU3rsAlx9tdHHzBbMFx6v0cmcnXBTFi+AVoDGCEUjHwugVUkvZAJ5Xo5mI1xgo3cqBz0EmYtLHg0UIAI8PveWgsLm1r3cHBHbpzKxC3hw7idJz5MbraWr3BrEbgcDAeMTxqhv/c/KgbRsazlKGuINaoXk0YNxkZiCdW7MaE1lxgC1WkOzxiGhUBzYFHk945/rCeUFGodMzKRXc2eBbOZIvY+Pg3USWg5WuVwPqYxqkBc6cGdJw6Cz3f6hZuGKnu5Ok1Un+ssiI8UxDDhGdDYn9AuEcqpebKVsq6kVKvpXQ0FXYuRNwdXN69KWLeMeHLQZ0Ga+K1Vgl+r4e6UhW+00PLGzN8DBv1WCGensCuPJQWnid3ap7c7ywyJKuR6/2rHO1NJ8DnWh8UfL5BmviQ0hgfPLmZDadmNjI1s1GomY1KzWzgw9OAtnUQQxdppwYjZIiYKC90Ydt3+757t595WYzCUzsqFfiwIEME3ID4DpVGQp/hfdNKnX29X3YCsa9GOrWX1fz5IPySqcdnLTj9YJwEqVTww34xIUA/SFuKq27xwbrgM4Tx4p87P9INt/jW86ohYnqiNl1F8eUzUO9xeKXhxWg76q7O8dhKSonEPfiyxtCfVKhd9yL1P2O05LYrWxJLk0RvFp0n4Fdmo503+NIt8gU49iE8coJzNpx8yU2j1Pus3CwMEkU+X8mpcPGMw8VD4PPxIc5J0HPtXBe6IczjKeIMQr09pML9ZcJi0pfMitHPyIqBayzb7ma+g8x7QYxcDHRMmkXHsId5xoWVIBauMD3mMzYjxodZUsktl43rnD+IUJW00xKzvyBxhdkJS9WhIZiTpkHlCyhA5PXt4QiatAVRmcJv+QGPoVJoHpN2Wn6Fi69RjoOY5E6Ovw1rLJrxZ5hphhArGwvmoNniTFFk21mqSXOjOO55DM3eZPNsT5m2cTeYxxqbFEbvtNBL5xq5vOwsXKzMCY83aredH7TOxZyoMx6hTrIUONMEPGczjSXHQ6KFt8ThL/xIhYoddu4oyanYYaeOkpyKHXYqdtg5hAsnG8087uPBb56IjU0Xyl30zq7euxGrTT7MJ219uJRmY/BwMWLl2dUar/Rw5jlv3asCJkbem+nIzrog1a3kZQPmm7GyDfxBE7WPocF7hbLpU0VD46R9ZSXtQ7n+ttZ1irCMVxxulph9MsDsyHsXp+ByNK/ZSph9qfcl44/q0NSlrAXHJonYCw2YCKWYOZmxY8lbN/nzAY2ZZGXMBBXpaGzE1Nk2xAnXwLDJr62S7uBqET9gxuewLKPaue8yZC/kxgq98fx/B5UmnKg0YQG28EaiHOuU62z85bH+d+fyZyWjN5XNIZV9pp/L0kMO0WyZqWzd0+H2yl94YJC5HqFCbTOqtKFB4xZAHVxDUOKNIYRL7VBuns8WRhEk7odPcT/ijjygx7mQPCaF67CKEBwbleD4mf1WaarJd6kvVwk9VsriPgoOYnQOh0Y51qtuGrFw0IYsr1XnmKUNea6zgI7dyUrCJysyf6qaAj32kZFKres1bu2xs6YkWHPXQh7MCqerenx4meiDMXnIvIhxiYiBgKjhu/zx5IpUYOqrXRf9c1PhVoJWrhrVEIlUEfgM5ucuy/GSiY5PERKKwanFxelO8wLIesxkgg2PxrPSltRJ2PeMn4jWvQPvnRZkVKJxEye23lbcJy/qvr5DmDNjVCyikdgy7zfj/f1Rnun1Mn3Q/dEOh6SEm26MOhN16oAv44PM4R1Z8Nnh8AOrO8FgbYELNvw2bG2qn9pDTfmlwMQuCy3d3e2K0ShgWDZX78x90sWVFXwshuyNosLnRzdUYPDdNkYU8XKhzzNO3ukSVGaFIhzmTZ+FO73TrliY9j/F7z25uvWmrJYrpyDlHl0s0Q5VX0RZkJGmyL2qHOpJBYL1sSbESi0EiuddG6vNfnRWmyh3NXuss5pQ2UeJij7iMtInWN+ZVZJbQsezeK7Jpvd8FRq9G9fLQ4q6JTokye/UuXUgNC3KS1EZHj0cz9d94xRByGVaC9CkSD3wiqUndgyD7U4RVR85mQmXt57mcnK4CUlJklPZ6/WJ1KDioIlY/HXh7Bb8A6wKZqei2COfdNtJoeIWdOF4JVYoLk3xlFBDkXHUT2Ue5SJr52nnYYgTaBvtdfChTzYF4C4YShFH20EDV+F0doPo7Cu+QVfmqMONNtJxp9LR817EeIEfwaHl6z6CuTcmwdwPKpUqp41UqixcILrSgOhGBaI7FZeVM42IXqi0rEqlZW3jq+eZBnHzB21pJPcy/vmbGCczfzASve5Gom/PAeIY86109TCnDBkcYlNJJ5PWd7SE7x0l2twoMX4rAD1JUheHgTtMHzIH3FoDOG2fJpIJTbp7LveJ4e1TQ7/JGWbemACgjRcLleYuW2juvQmgQjOOtO4D6Q/s8EHijlpHmUJtjQIbsRGdb4TJI+e1yOiPlC8kjRXfD/6oLPZzp8vnnRT2plxCrTpU+AFpWC8jdWbmHCZY4RCxdAqIBbmbfOPk0EkcdmNx2JXMYb9xQew3Fon99mVPClmDQvmiB4VP39pxHSg6Nvzo5D0aIvrEEDF/LWlcj5F9kSWNX3JH4/tZ7nCTXlG6bt6SFMvhkdLBwtoXLpLf9yD545UTU97FEeQeg+87C0cmcwD+JWtq4VlTKz58ilVu4qXdwT9wUMl2CiH8nIQci7dZqOLFHuPFDf453NT3mMPmWp1iw/hFk6qyWP1Xmd/ArJNcrYoPCUMf6rEoc2ysfbyx5oldHcN0TSiYzC7C4bNbFGE2mlnG8uYwriwyVYezaRdficptl2h4p+/4pR+4WsFC7zsaHEfciR1pAHAn3jqihRuVBulTlGeL6wEIcd+jkgje9Jigpsfw0wIIrHhb6/sY/4GDCg/LCxZ8xM8Y3fJH7AFZ98l0ENZf45furAB/pDUg78sfZCrXIFe4gmTHJPTWcYNneNQSeOKWtNZIMvpGlAXL/vjiFf8JDF28bSw5Ks5MH5TMBC2UAoup49ddWRCHghQknr/egyMVnk548U2ozUd5qsBlSGerKVVMrEYVEyvUNHJu7c1MMbEWpphYKytcURtTTKwHLPidiRWJ2ZXU0NvAZ6kpeUKMLA8pRpY7tfW7xMTIiObCTTMUUppBOssVyNKfqQXfhYM96b3MA8F/ZHK5t0HcySUuvuhC+GV8tXvVxLhu4CENLJP1yoVW4tgF153xkIYHWzgCY49SpInK/QVERtspMsbFfzWSglk4GmO3QRCetF5ocZCU6Gu930uMIZ56WGjqoX2kHl6X5iR8/BGUJ2VBnhyrPUpJIV2/P8YV0nj0ZagLfKZS3nZShQw2rbEiCt2G+QOnRcu86Jd2ylXC1ex0p/plG7Ng7jRpLWBS8YWmzXkONqJJdmDTkAqZJlRBqAQ8kYApXH1xRV5c4IFn3UO7ysbRtJzZB56C+YjobzRARM+FJYGG/lrF5TqSmOidSvqDxOcKiokr2cVPrR2usOELt3wTFgcjrzxvzTaWslmUrZyarhJTFKPhxuEvaDm2Zj5rgoW/4dsCi4qB34w68zB892MReRjWqWGnvdunRHXG8GDDIx8d1PwZVR7RIGmtVEQcoD2mKe0R1ERbYmq1TWCFdfiNbgorpOOomMF66dlq6Gbx/D3NnNDq2ca+4VtDnzdnNHhreK65wePL8+XgreG5hocii85XgyeRZUwlLBMafn1IKmFQw4dFd+O6C5yrumee6l6o7oJKVd0bTXU/qN4CQMPvfW1F8Dw3R7P3cDwcQA7mcD5cVuqBYoo9nnwuRK9C5UWLGy5ZoclfbnZZE9VIMNVL0v/Ideok2E8pG1cpd/QujOSSM7q4bcH/zcSS60KkmqTHe/xqcWRFhNuWuMlmE1YVcyGVRva6pcwWnBQcKuBNwt8Ey+TUdcFjy+OLrZtdEo3iRbhe/yBlpZUjv2vY5+BCArMqR4zvWZmm2kesa05xp/oxHH6+RT4iZH6TYbNH5UayGzcwfpCsKE5K78bFZcGdciHTQoZGFSmIHQwcTCTIHEStFDnvdX3kwmQJ5wozfzkK+alXp3Dkcru+0pI4dWTKEcs7Bo0Cwydo6nieUsfDgpzNkxZKJgWwlSaX2065/BbOtpZGLWSDJPLfWQfmYAWVC6CuM5OQNCFkK5zsRkTy6N4faPGozkRHVwTurqS4bgeRXivHLKExET2aJZ/vpQDyvZ1HAKCz56g/pQlelccR2m96nh4OKe2BTV8myezvHRrj68R3lBHPS6NG5Ftl8bYbNSLfDrxKL6Soj8/4TlLTOwaNQ8FbO/D0Oww+4AMGjcMXXAYny2WqBQK9Zc5XQ89g56uh8PeAO6NOuDPaY7kz3s3dKomwkDvL4fTcRnJoeGe5DMsPlePSeNJeKsem8bRc47AWnl5s45g1nsSQRnJrpN5yAplvKsmq0X2lcL60BZEKAf9NXXdi+NNaZd2JYX0aBy4Y56AdI+I4KUEkQsRxkkk8hK4BTYVatqFIXffFlRletbEDqi7xxTMO8S8hpw2rN8RJ1gvvOWZWykJIZoueo8fSzr4RkwXQewgOA7EOrlpH9pDUL0hCpNLGm8ZXzwtcCwfxCKgj0OoCpmj8VjS8ZAWhrYd/AX16nOhcRpALpYPl+nJ3YoIAWEIc8+W+saIFwbPnsIkOYSF43CxSWQbAQq2EjDQjYA2R546cnDi1JtcYcOGAiZg89q6Bb8rUkbruqQzzI4Vm7JghBeWCGLg1aOsI/yTHrrXh4KGxCemgGvJKwl104yy54Ea0saivuC1tvLjNN1mFKnmK43AjFiThZiBxCDOBfHAxjS0sFd2wyx4XSMcdVg4qEKkmuLsj5vKYMdpNsmRg70ciAxLknEKkTJdH5Joz0zhYqY0itTKtggtOjzTta64H1Z4HWD165sEmG+13iNejg1eac3e8cxFFXGDNN9r4Wl4rgZmcTQHej55rsFUKcKhzvY1UA6Mci0iKrn2krcihAx/BhJZHeSeRd8Zg7se80RRwlXSoaICpJAxjOuC4qJM8JjePGtSOhv9o5cjX79joApS0wG6OXL0k2WgOlKRMmpMktPc1dK3OtBpKQnzHF0sVlm1RUoX3i3neJyepwd0/Y+ZFOpgwKkEqQH67kc+9FXOOlKeP7QJFAg8yL64NvZEulnNgLnrxStGCuosrQ0uSL5ajuiFFFuyQZ8uhN0SZbbNqE17L4yFJWBHoxlZxfKfc7LjazDFlWjj5X1h4DA0ZNnti27tlI8MxCJ5+rrYcXAkMt20KCbLVG8cLFOCW+3ILVuouhTwe07Jhsxsql0JlcEulzmqkUTOXgg9PmC1WSvJsvn/j+o/p8q3EH9OeHrJ0cutjWrc8puMFPL5zD5B5j6iCF+IxYZdGg13qalnl0zcoJGlL2rnHWXlCjxdX7m7CyJudnQ/u8BxvvitI0AjgxduAG3aAGha8wlJIz/7OBlMT7v4ZNwEK3o21Gt+4ddEHis6LJMjJDDw7NFhOOf59jtZSLnQ3aaXWxmjD63g4qYt0vZrBKSYjES17qykOExltr3Viey0POQXTLdtr2TkFix8MnLcDzjvPGIW6Ia7U2d/O7fXKIeKx9tT9TbBtO7j4J90UZ+6muHCPLpV21Ggbt6hyUDfnmqibc/mU5xRV7m7deLv1rfvrlV1xoR4jKm3v/9m3190NcaKeJT77/rp3lLB9u3Wb2K3rQ+7W8506/mY1OElnOacCL/KC3B/aeEeymH5fVZql25+Cacu+OtJO/R6fhG/fxwVGgnfZjBeHYUG+pdep2xayUOUkd86e+qbxzWbhBJA7s+a6cFYaX3/DjwjIThwKT09VQIUbRWJ/QPAT2XiYrqRWjkLFGUUmYo5nuWPve8ZTnqTyKIuGRrVSIq+XUwFtcOwTaZJCLUSW1kYlw/YdgROTO0qkNNo3AhwYJPrxma8nXwupVqpjvbJCPbwatNU8X6oxbVd2UD1hjj/dQlwg4aTSCoc51JkHuG1N/znMAMukmqhbh5Xt0Bnt9DDklZl1ctgBme/LXKDUe505MdHnWZipq6kCp98lpUazI5+YHdlDsqUjJM2FwdR4I7AwptpgpExTNeErM6uyMFAbgzQ2F4ev1H0ftBpygRlM5OLwspxpGHCVjUuDFV+grdJckuc8Rd9ik7xNDAbrznzXHNL6aSYYOZ7IwRsQr4yQDBwhxadgsb+gCPiOVTcuveWcannRvLtSvsDZ8xiuVyuJaFo4gyIjg6/jkMIFDHZgJmfCyD0WNv56nqdnRirkLlu7yWnw65m677JTGbGKz885g6aJd/pYw5VO2opw/rXcOXMo75V+w7hr3YK77jaKO7c6PZN6s5VKtJbgLCr8OzrvrHS4aSjyzhxUsQqDWp/KVRECThaWrRNnWUf7yblN4Ave3sjzKedP6fXMZZ88livTYgmzr8+/JcfGJvIEHwciX5AiMGd1nKhQHDVKqj3vwEWLIwqe3kmV5qc4UY/RrFd8rXiDue1kVxutwfwDK3RDZbmGu6Wp9mGAXN25kSqO6wwZZ6rDTE0OpTr8fa0FR2pyoNVxyGVtyO/V6YAbIVRbuOo67a26RraKmVVMLp2ua6O1ZjuLiQmhqG1n7fitA/prlVnwjHOmC6l8vNfwnKjt07KrL7p8myc0fX8sTV+oeZBEjYNw0yBGTYMoVaf3zmqVVXPpnOLoeCck/IQOaa6JpegWXse0r5MK+4keQR7QNEU/zQn6K+yBqY5p67/QSumFnMIYRXcowT9w4GonqYvawxhWFcCuEEKlqu6UOtUWyBysbMdtMdwRD03NS6hK0wmVo+in3ru/oBMyMUo3XsZDYKERjnyERNOdOqHNPO9mgCTGVQwtU7VXK1R51CquZ3I0+DjTxg6uPJqo6A6XnfonV/dzgOYTsu74ouA3WQ7meV9uz8u+UBmkzE/ort72KXZ+wFtamW7DyokqZKI2mIiAy1UDs5E0t8KpnT7vqCssTf4Wj5LlwunAo6rwkbXb1qghINL3pMkEH4wVk+UBie56ecStbSRRvifxU5XDkmlpvlKoOcNSWVpRacw4ZTmYMcMTfX08h/I7R03vhCkreurKQTU99p3NY/GlTIgv+av48sXAuL5kFpdR1Relqi89Laft1HKOhcTfFrnFNskt2pdIdEEYikku5NyZOFFsyjyBiEuTFi5OeioVORCIjs36jabNCpQKVyCaUiz96c2VAPDKdmbh1LkMPc1chp6WnQy9FX5WUHBqrJybUlm6YZEFY84pR1JJ8cWVqoXB5KyL5Xyn4JN3SlWFK/rUXeJU46pJBzdsB2wF82mqiiSw5ChCznVnrs8+aRDPN5IY8fyj7Mk/ylT+cSU06JBDPd1ZGorAubUEA/fHU22Bc2uIpBKdmKdQOtE25vl8nwKX875QWy5Uwa1uFNwa+jgIJGcANeWWw5G3RMqoOSfx+D5GOA7AbY88hp+LOu8WKAvmhJDstGC6C61faFDWghsQdFrEL22fqlqosmfdi4Ote2XPqltF22osVRVOUCopQdnLYxZSeFDJCcrlzGRXAa4HVQFuiZYWpKJhmzL15KlMpE1mIhc025aZenIr+xTgOqEAl4esYypcBbjEFOCIxEaSf2+yg5JblquYUvd1fmXiIhBb4SJ2Py8T1+YSdJFg37puO1LACw4M9M1dSoHzJ96lFFkcH8oFyaSJB5EVXIDfEaaL17ApjPfz5ZZT694biKSb4xJm2ZqsrPC1C6sL1eNS/8EV4/Fu1Iv1hNX7TUrF3Xr1yWYL0ntMxEUa366hspks5hekgDIq2yKla9cvvZEkbFI8rndTeeIyY4VUSE6Kx3VlbMOVZpIg62HhOuOSOxlBO77WiuxkU1CMnSK4jiN0B7KDj9JmA+fOaIKNC2xVOPTIFFgTJLBGh92xdyLDAm5MVp0JTY6vtuJ6JUlb9TPJhqut8qJq55JnSEQUUjCTpa/qHn01omcVp5YxTgXa3omRkVB6KWuJ1Em1c2OGtLR9fZILSuoY7om73EFdNfZbHXhbFti047VxUm3obfncoNr3wihJZ43DZCvOPkVItUwCbIWat6IqbOyWjiqx4/GlB1XYsUIRVWBjX/F1Mq1NkmmX6KyFio6tTDpra0xybDtw1iuFQ+tRcmybkK7rY0nX3YK5jQqO7dSefKMokjeqOYU7bYaK4c9Hgo07Bz6mTw8fR24KRwSP544E5u8FlIYpgVwmGvoAuTyuj4jjILVl+bw7yBMSEqxwhPNO9EUac3olBxw4IDFmO40vKribfjngrL3eHEWLJY1U9Norn1GIHqSk7HLv86xMR7c24KjB4rza9WqW4NqXwc60fisTO9P2kKbKiAlmITFv8x20CztXJoTHYibMqUroybRimU9OayQ5Xbmek7ZgOQHqESKbbAlaOCOmV72vsnj6TgtRUlmvrlYh6MxRwHfuezMJnuCcrWt3U103cp6lUcHMcsCQYM7uNXX2wkJNvCsXE63GdAOoc+LWyvFuWvRkpoV6+qnUms+p/e3NyBvc3rnMEvVcZkLrM4UZOsa1X1rQfTl+xuqdycth9Q70vhwLh7zR8Ucnjj/HYx1/4sRI3dn+ZQuSwriCgCUCFO6gnjKa7x3TKi5QUHmkgQ36sbOtae7EM9MyJcJVLObq32YwYVMnoNGpz3FYHueY0+tLmmqD6+tRwKFm4nTXcKGHc6iJH8DwFrjEOuQ495DT25AvQHzn4Wzq1ONjZopGigRpEumQ05GftMHuQYCWhofTaMcgnzoGrRCYjKd27T8HLZ1GeXKXFaZAZZV6GKXJXXbg573RCc3iJ7Scvp7QaCe0Hst+ISpwA2IUzis+xuOkTj2U+apdKnVfJtxa6jGz1BR2fi4SgWNEbIuDauKkKluLhYVcLDyHHZk6+n7aQmEpuxuSpVJS7lPV30Tb4EE9TWriViLLJ+0wVsVLOmLlBsY9Dzv3PJx3jgIK97C9UEQBHLbbWhvtcP2Dkca+NgUlDls7WFKxkUA+dcx892mH2hCMw5d2ZpdF5N3P3FN8QURgWy6uGAwEGg1XbAft9O4J2JFbkGgCnrWd1lfqBkc+x/QO5yRhgxQTJhkZp5o4t1jC75y27l6y1lG/k9855RG3Tog0o3mX89WUGXDNeJh0Xx+Ej8dpPjFOk68Q3U8G0V0i3zqVfJupuFrocJ7PC0UDgXgYbZjHDx7c5pARG3f0C5vXrdyDYktyJ7GQS4nnDAwDgC5iqbu4rLybn1uoY16BTUG+xdIw0fsLU6JC6Z60wHqlhhBvxBTiTXkGh/MReUTawcdbPC5vl0BQuGErbKYlg/d3Zqg1zLmHMFl60HJeka+JJVICqLDGWzO9zaY7Sa5GSgIpC+/rqPQHTLpy3EdccETteP5X0SuPTsOIQqIdVIXCE7fd2oULIXFdMOKOHeSLjsCx+WGBsB0RDjwjntgoDxj0BHrFf5JDL7oBQ9REGqDF2ffAPK33+WSB+zrHl6rgpbJgwPFKTYgGfFE9vQcO3FNwc9nY2JwrLSGYG16ovAULLFExryScVDsmbG2GchdlurwLSqWJvBMOs29jPOBoYDhGAV6I8ZbKDFeWxgHYKofrG+5grujD7BwtJxyBUTkY384PYYWfZT7+rQKwvefF1k6i+M61pQbmVOdLQc+paC/qFPAbQPSu6L8t0Wpcm2wtMIbAvb5cndr93rQFZZUD7n3iAA9/hBpsQ8gkju+t1xoL2xCiJN+AgpNJGN9bhzF8CBXOfChwRD5/ncbEPB/OxDwfGbhhz19lYQKjj4oDo0fGijxhrNCHNFb4lpxST2jGgu1O6iqOi6PQCI4USBJqcXHqrNaQ9s1gICkoebCKi7tuBLi4mGaWyHHUm7GUc4+ZKeJBQZ0PAuWdIBrZWsoqlZX/DLov2BGpgxfS1LSQH4uFdISbYVIq6gcyYaQJQVoXW1tnM1d5d+aq4AnV2B+oSBu3kdqSe1WpCutPNAJFjmpECI8ih8UyU/xhkwBLim0sakWAFhOl0nnBXsCxVlwo7LqcMpKeWGttwVowflsPVkwu4JXxhIO2xvU1gmO3kP7l6MMnRaR920d3dd/ZS51J7S66as24CFUWTrqpW6bdOA6FslzS7H/NUb04J7zllePSmBD4lVTW6yTXRkfSxXwaGg765UzlaeeCGx44Lc1hE0JunLB44VgzUrh2lspTL8IsaQGMFxZ9T4txqnxJNgyn2jCcasPohV1LxZO94/ex0dTtcuC6+1jU5wnIVTZL50qVzquxBOnqTKpfzUyq35TLou+MqHsbp9venu+DWWjdYE9gDlovgt/sHOxIjn0fWT3JqbMaemZidSX33jc0E5LHenCZ0IPtIbmVe/RgD8e5bSFxDTQLRDKZTmJW9vTJwtXYK09jb1Tx+qCK11N5emHH6ZUrEBsrTG+zWfolJTwvoCR0GiWB6L0T0vin1nuXIuZ4g8CFapWIarFsV4t1t3oOt//eWPW/wg3Vp96HX7jie90c316oFAj+gYMU4S4cRVdXovNL6rNStXEzlt6sJI22p03mBfLGPDTZCje1bZUkh5dlOmQ3r2sHSwJWUhb+08iyLCEWJy+7wdWq43fG4fLRHbqssULyMzVeXjnCtzJ12Yv34IBlXpL+2gtYC5VivaK4kjRWm9JYl0TLvAbRnvRg4ZJrYG8DCLDnMfASU2CpMfCMe5Fk2osEy7IRyVc4Mnj5o0i2kbV9KwC5ZPi8E1q+7MuYl0oVsxs+cLJ5UEg5SEFx5aTvz7Vv54Txu0FxxVv1xhgCQ84SURk4PHkKSZh5s75eeFaAujVLXhtVcD9oyfRES6YLS7ZvShW+DY+hjzPuzg2lZ66qXriaf6XK6o0q+R9MWf1ITMn/kH0ifZ0Q6f0hRfpGouHnznKGGLNvlRvTbiTp3TrLQQCc8xcKR7MbR3l/Glu2mPQe8QRUbji7kbT33gsVhHFz8UJxsaKQxPcbnWb/ezcOgrOPVBYUEsu+W9ghjVxZcCwk40PvJhailnODExapjv+9sk2GTzNvmSHdD4WkwPe+foqPZK4/y2tqfMGFoQzGqcOWpTGaHm6aKBD3PiiElC1Sfc8vZbRKceVo9ROdGwvS/XljubNsqqxAtcbfi8JCLpXleLVddERoTLWPG7McSOQf3K4OX3mCeiSqLGsFQZOJccXbghAMPtYdFFT3A7vs88804zVEnK5I7y1XqXYqb1zOgx87CUiZXLOUV2gjJCE/zuRAdP04mmIlSg2AuPKCYXT8PcEDDAoR8OMOLq7QH2qyyAdu7+RI+b3ulcLlbJVFx9pQmjaq/3RBp0cwW2UGI2kXzrJCimF3LJilYiAOmkLvYZhMgd2ip698Lnutf53j30/RroDs9ZSTa/htrbbXAVUdGUInUkBbo/CYWmDnakyGj11pwIRd2z63VD32cX9aYiIpmuDNRByx/pan1Prw72EoqNQcd1xSFXvbQ9C3zntbqc7b1jbaS9tGCM+RYFzF8CPDafuRxXWflfQgEXoKh80fvkeODBurxmsXphnzqExb09Gm98oWmXkeB8Oa29FIU8JNoqfrCf7EyIF9pCTF/wAwBJZkVGiQJKcyqCRl5AxwwSQo+CY99uHhts7Y+vh0ZH4ALukAf+wiFfSwUSUwABcRYAJ+0U6gsJ1uDDUQdIDikcXxcUroyygwFvnc0IP5Wc7tJwJvPi+uDfazXKwH4f/PX6vCIdrza1M0NnuxHFLhdPFKDfxBurgydKN4sRzS4nTxQtE+zYsrQ/eCNfBDDgP6y//+DRu5j9uE+zivu49PjMMzvuNL8zLgPo7YQZXjPO5xUoyGFfCdVIHMlaQKlSJQgZ1JotK/AvPFg5rBnmKBvX+wC8mP3BsqiVLHc1MssPdPdWHZkTtscMnwgIuD+updWwU2CEJyHfc+zYPJu1Yk+iajSE77ViYeiuVP9VBcIn5xrW/Ge2I77Rmbdz5jdz8Ul57YjfWMPTY+YyVxH7LCe8gq9yFr3Ies8x6yu5+K6HOsch/+ux+LoQdZ6JG4sI3QhXqK0UNWJx6y9SHLivMWOPWELX8nVtu5COgVQPXYfAaRYp3zVJapOuMVvvSBRM+ccDqdCHTI1kCR6NZ+XVsIc4QorvgJN3T9KxEjEt1ad7YZ93y/0qg8Yyh8O9Wvmzb63xV+qKVgd3EkdS13Dsb61gE7Ks/CqQsopZB1HMrM3hRtn4Wg12jXqG7OMOixz7VqkOVaWXnasAPWlAoxNaN2G9oCJnScE83AeENJRcThXkOrzO5Ba7ClnJR87XiUfIEVGIu5Bp4wdudkWG/SuTKuV8yhSQ4rp9p7neh0M5pSHZ9VWAHV3tf2YMH4Mu7lGo5ebGL00h4SOaZbRi86JXfEYTw6v3mDfiYuQs5UFalwVSTkd+L8ZXLPfwcO01HAdbqx3GVhIiM7JzIJGsjE5bxlGcUmihUw8tnpCUW31I71lEghS5HSaGdyOfCs+RjUlOAzJWfm0nsTVVmnd91TLtYrMFGHe0Y43WK9c69Cnutor1jgMX2+VKOexvWgHkUT8JiODkjGG3AlFYEZdxjSyY7hwxC7k+BhnZiqFWabuFU8kMkcexhp7NG5Nkc3ajY+9PnEoe94SL2dxZnWKc70EuXYqQjmTAUT4921NcCsWOjhLdM9vDjErG4xhtscrRpHGAv87a8sF5zMAasjY4yyfHgbAMMzLlYVEFMdhlDF/kBdIHePT7ONS1YVHAqY7zRutcPUUF0AKf2e8jnFrY5g/3NQYZ9jqo6vlmwOw8ujI6znglu6xovXNTzrFlldUPwrXjKdySr707cxgp4zwXmtOzR3j78lRkXDLgCsDZLg42oNF1kduVo4DB/xV02WTc8AsVcA1Uj3dNziNM94dW6AyXWjZc4N14/2dU9f5KVQ2GDoWtEc/sWHVmlKWqhBfB7a9Ou5I/C2HFTudk5UjCwOsk7js3zWhcO8zJecZuMyybNTLac5L0C+Y7BqKqY1163Y8LamfG6AV9/igcQCc2RSkGUdPQ6kyMGrKFX4LbaZle2sUGrJJB1YOexqi/52wm3TAd9yQSk0twB0GG+ajhCNE07IHddYCzVkjFGuJ3iNc23T3RRz5aJ3a6bFjrEeaaX1SM9Qx6m+63rsQ2ID2OqeN7kJVbRuC3h4YEjbjNKETuVadxzSLTM1+Fb2YStb5VArS4xwHeU1zo8328EhTwaJ1+GnRAlspQ6hwRMP3UuEPYwFPzx8K1r2yPCDJLR8YbERj0qtXsfhhTGadbh6ncSu/u0ualF2dUBYuxDuYa/JxbXBZpMWxVAH9lg1iqCOPZ5alEIdez5dLIcQBS9eKLrbu7gydLt3UUU+I5pZ94UCXhF/urKRdy3HvWslPZZ3rdsAjZRcXRT5wjPJQiOy0cgv3rkyPH9UVvNHHyh2JNhLt04eNXBfuKcS2dIjC9XOVP7axXrQUOXitfqC3SjGhcmcGuEpR1rv/HChWBeSFU1773YjU2yOjZ3GOMXF7yyjWTqVdgvmOguXT9q8u4jV/1xilrSwzBzj9WRc/93hUev2GuuK+4UUTurmw46FX1QgTW0rhtGI0mWyU2M15VUzB25Us80gJFuww+zwqaVwmNoQ3un5PQA41CwMP7CG5znHiy/0Se+xqGn8u+dCNd644hosiTaTo3F6wIV260h6nkmsK5IL7X3md7x4pRqCvJHIVx7znSH+mo7bKtHS+lk2F0JnZRlKssEYMI7DrJO2BgxmYck4b/S65MoUznNjdjJnvD2aZBvrsKSKIIPA0+dRURpIrRipfVhj1jBErb+2ni0AWULrF9xpM35zEHnj/DNsTNx8OZjdATXB8PodHrDwp1OV2Vlc4R1fDjrAAj8lHnR/BXdJOegAWwFQ1krryK0QrygH3V4Bm8a5QSix+lybAIdWD1q6wtDDkGMr+NU/lTga3MJcSAatW8cn0WDh6nw5eOp+vhz6nDhfDX1OnAthKKarjIXrMiFcy0MK120LadNPFy9UYbtxSzhJRJYbF8nSw8VUKi4G9cmcrwYnzRtZ3a6RVvEF28d4daxcIcpbiescBWwwiThDShDDEqHD1DuLuHJbRK7A/Jm2mz9zAHvHC48S0uF5/rIhddsmXrbqTiqO2oKFZrz63MHtgo+hJHym9WgthVVqpiyiyu2C2BL5zrSFZjIOQ+Wm4XfH4LxqaHWhtp+Z4uaY8bUabuvhSNK9b4Fl/Kcuzwv2BXfWcJTpCeZN4zJvDq4P0RPXiePC8Q5e69nKwug4SY/uyuXOwvIUkiKtYZOWFxaap7A4Kb9H8wy/KA2H8Yyv/iDRc0pMoQ5vlyPvTBZkt3zOYVl0VA4v1XDyT0y3HsdLLl555vJxcEfkuf5bge11ivif84o3crz6gTc5bqGfxF2Lc6p23yxXdLMLpix4HmN/wKn1EAV1OZ77GdB43vlqlWLh67yXeGo8+Ac2tk3CsndkbaG6EWGlO3GV7oClrzpOlIlp3+Ftu0xzEnFpXHjSuN45LJR4qWc98MqT4eItMS15TZaYM5MQw6awz2b8vhjsCBqv7dOI3xB7sWVm1Usr+3xHrTJNi60xnUbtoJoWD3hScjrIOQQv4Bl+LIdS+3MOo5bfQpiTm6GgpCNTMU9HWXNyzl59xU8CEeL60daoVcP1D3iYEYsSpwQ/qgxorsQTqw78Nd2HuUJwLHr6tgXZLNHmqMDiGT5wRb6yZ/SWGUrXeH30qRl6cxpM/SIBXnp+XZGEu2wD3a9w21Zodai15KLJCKoKunhPIRDSxXXlrQwyEXT0cvHSkejAxStvgPPj4qoOYM58flWaqLwxhW+QiwItmBF2sR4cwrlYD02qXSyHVtJdLIcK2RfLoRHri+XQJ0kdG5HrhBFZH7L9MXPbHzO3/TFzzMZCBWmlzmoFr3qiWI2VStLqtcUdZLJUghywUYpWxAEbJWhF5DYP+ohXinvEcXfAqm9Y+i+0UPR6kmt4gCFrmxFHwq240bQg4Y99orKI9JmTaFTJBCQjE5qcJeUHLcRzAKKxDbewal7opuLY9TdqMwsEyJLBl3uKjxVmJlF9xBr0EQ+bI1OobM9wShLHQxz3NlomQZcKx0DsXLRVtymy4VAkkmW4I9J5wmFCY1+lUJ0BDg3sEotU1aG9uK+hgyZVJMeneiEDkReWXyAgiwA4qxRmhjXYGbajUjHOOUowi2i8tnAcXBozEEcNBOPrNqadC29VNG6rom2hXvUqwTKMV9U7uULRsApFLmspkVhIQRcxRqEqnD5FmQJmAdL+TJsi5AorHDtx/E1GenCMZiz+qInv+g3GByyh5Q9Y5ebYiHsUqgWdOGYcDuwzneUalik+VvC3Kq83JHbZShWFf+SgB3hBVp4iZHWpVvVgVlk11Eu/zskyMifrvUg9UgrbhFJoZ6vdvn/9+j9+t+T/efH2L9+9ev3231+8+cuv1/aXp/X/8rfX//jxxau/v/z5V/Hvu19+4v/zxbfvlk4Xf/v+/wHMJLB6}}
[[Blueprint book]] string to import all of the balancers as blueprints (only works in version 0.15 or higher)
<div class="mw-collapsible-content">
<pre style="white-space: pre-wrap;
white-space: -moz-pre-wrap;
white-space: -pre-wrap;
white-space: -o-pre-wrap;
word-wrap: break-word;">
0eNrtneuuHEd2rF9lwN/sQa5LXkpvcnBwIEgzhE1YQwoUZXhg9LsfacRNymZV5srISJJS85chjZW7+lJdmSsivvjvZ9//8POLH9+8fPX22+9fv/6PZ9/894d/89Ozb/7v7/7x1//t5d9ev/rtX//08t9efffDr//u7T9/fPHsm2cv3774x7Pnz159949f/+nFf/345sVPP93evvnu1U8/vn7z9vb9ix/ePrs/f/by1d9f/Nezb+T+/54/e/Hq7cu3L1/8tuK//uGf3776+R/fv3jzy//DaK3nz358/dMv//nrV79exS9LpufP/vnsm5vc788/Wk3B1U4XM3CxdP/1Rf/rjfrmd+/r82c/fPfLf/bLv5Nv5dvvv/vhu1d/++XPPH/2ny/e/PSvNYq7ek0lefvwDqZfr2zbp/M8vMhPP/7w8u3bXy74w3+uX/qHe5POcnb9Ej9eKP01P322H6/k6IXJ+Jui8W+KPNQ35emz1dhXpfPZyrvP9kb6Fbhp58rmvyvvv8PPn/395ZsXf/vtfyona2f0dju90kK9eSv6Aaf/+br1ZO2GfNqnV3mgH/bp74Ik8MM+X03A1f7XN8fP1p65Yd495f6ax5+MGPqxn34lxdHP53y5DL6jOr4XBb19Plp79ISw+BNC158QJz/uM8+GywfMjieETj0hVn4rjfv4gh8Sp6tl3sOwzPxMdFeqtN1Xw/f8o1vL47eWPdbm692tZdRby7i3llFvLbtTdly9N65wf+IqvJzcV3dZ729+jW2z0J+Rky1W78ftt5U+2rqU2HbremXpvlxRfFs53rrBB5TIvtDX94WFs/O6xTezBbwrU+DCK3VL38ArPb8XDs4B4ex1a0I2ETr+sBQ++dv4+KHooyiytgG/D+dbUQe/BedPX/RQY+P9UI7vh/zrUWNhbmlTZ43Onajdp6dTD0GZewgq0H6DNHzqfZ6Nejo7kG0GYS+kE09rQb/BibUdsvDD34C9ZWINmyS8j8jIt/v8Yy/4UGw8wKvoZxVZvMEzMs7258OscfTkK/EnX36sSYBRJwHdwcJnHwUk6ihAqKOA3hs3fxP3PtXG3c8c0HhSSYLL06XJfXUG8PTVjT1SFRmBnL9o4+riwJn/hh76rxfW/msuvF1TxTc3491II211lPTA0+jimjbufvBDv2w89Ad2l2rw+Gf8pjg8toqNAcZ3yLnthqRknn5WFVZgz1ZDx2mBDWCNbwDLY40+/IveANoXvAG8fck7QKHuAHsfw9QG0GY3gPhmUhb0M2QDuLZVNd6G0qnOL1zrucny3m+wjYQHg0KSc87NfcHdXuCrfb43SKwZmQptjKW6cXzT4k/v+qca36Cmmu1e67hDmvfcHjp+dMaY374a8//MxnyevTrwtZtw+R8PajQbn80XVNvh4iuj5+FecPc5BPZpFeqpoVJPNI1mzzpY+3wnjaQ1Gnw4OaL8/Mut+Obf3rz+5f8Of3ufP93hr39+++PPv/4QUI4p4dwGdmYR6pklkY4sOndiWZjsnRxawh/67z7zl6+uPvLGzWwcG8exiRWyoMyo4246pXnHjOkg/KM40XQm9CLpqxXty8hFciMviRR5SZOJlxWzV6UeSBrtoHTsO9pMZGjkz5VgDjyV7fwAMn5I64ISsuOwowuHHXhC/9kVlzR12kHn8Y16Cjuop7ApwUXZektPVcIFlsRy2Vh8uO+kU2LQdxP4aTo/4mrg/FDIeg8vKgobTm/cwE2C/DfjD00Gn9n1OX9KyLkyupHcOGF3FXD46UmowOkn7nXWjO8P5Gp70Pk8C5WUoJWG2FDueEEPpofcEtOPZALsAc4PWwo7m4aPB8NHCOOdpIN3qMxRMHQmmib6WBKKnx4y9AHsWl3feeYdRAr3IFKpB5FGO4gc1IMIoIx0TyJCDfkJum+5ReBAht7FCcrsR38iaP6tCR/cVMzTZuIGlWaYwiUR2sGh67/Y6efiOdimVI+pM8ZnPwfEjywZvTkjb3DBAyEcc348vKLU7Kce1EOFJZqt0YSzuy6cU0FHTTD7VHv1iTCt2EOmaVkcifjW//Pv1ZXlafq6V/8D7tVh1UC5qsEffGfO2juXrXv+rzvzL35nvuJ3m0JjPW0ZQxt937l7ztzdc8FVN50W3bRyp+qNl+s5qJtUXBbTeVXMhCou6MajgO2KPutM9Fn8UdJT/RyqcmPUXzfnXzfnXzfnax4cqusmtMvNvF3ufkvNkg+m0Zh7x85dbuLucoW75VLelsvwbctoMzCRpJb8kIVEAQ+s7sxBGvXhspBNBPqKxuz20DmxsKKgSsbqA1VG4d8/FmefRdZLc2A9IltVqSkLHLDPwsrKVFIRtJjhewwWWqW3Wtv1RLMZ5IOUry0va1Ey/ZK5rgEOQMbjYMPfrcLta6nUny3ynH1hzD7+/U9wFhxJ3EPdIs55bq1E7afiBGNQgFOn59jheZ0Vm7orVR60vXEM3c45ROtC4j76PYqwBxR+SNmd2//COVa/r6rhhu3HB8xt0XubaiTeC1P73BueeIpOIz+h27dBcTZM6HozdbpeqACAunGf1nCj+XDtY2vKNHEjsbJzEiIL91uKYG5WsPlIoDd894WuPpM20MrsLk5QoUwHfTNhAod3VDQjUHijrwk3Vi9DWLWLE1JezhPCOLIK8iTcP7hAdaQ48MO1llr32UcU7qkwlh2/s423RN14w64euzNN+DZnm7cp5lV7yEGl8waV5AIqpw4qnca8MirzyklzSAuLcY3rCDl4pJQSGZolLt4Nl9UuNkHKY8mKcRVEp4LZIEaODD74GUTOMAkpYOY1nIQcL95ITVmsMqvenjiRurGCaNCpo+mktXsBwUudYrLCsr39c2ZifCELvvQ/pg5yp3L2/rrqx79o9lXORj3cxAvs2jvDJuMqA6Y0fcm4soA59XSSWeKXFVxSOFmt7hM/bKO2ZugNo7OnvRlu6vGQIem8fNp77173OxWDmqllJOfLYTUPTpVeMlV6yVT4qVPhp75FXbHTxZ10sttDRw2f7uInZwMNJnE9M/YXMtD2LLvi1HE9UrgxJ4GaVey+2lnXHx9owqNE49E6lx2miHSJo8BpZGKnQlHTzsh1gmhIkSckDYXUO4PvLIrUg5XGMm5gyoTEk3KODHMO7/XYES/8dAPGwuZr6IDRL4Zl/FEaWr8wZ0JWqSH8RsURHMyUgyPmysG37PJDcuGcks9+glxZKLGTtQ0+gZ+t5rjwPfzZ8IwuHjhueEEmWOdOQTgqcC5rQvCQ86UO5jAso3Tvc71VgH3y+XWhYJDz60JvEA8kNh3e2do8xD7DBS/nExP0sXS+GjrnyGOL9QTMXNPXSNp6DzHJ7ZGoqTSZYq6sgDUKFSBSd3qYGy92eHzaWpzEO46K8ILd+kl7ZqYqXwdwGadSn6emfzN0amT4Z1P1r8SqqEadc0zN/wZ24rSxa0morgNlRfJhrnnaMtcLH9E0bwwgbi82InMTPy3VXKjdRopJ1xN8b5WHlK6/zO1rd3P9ufev3OygUfevSqIG3pS/YTXihjVOq0ZACnAV9WabckD9jG5QSVE3ZH6f8D17wauQyB7lLzL3d653FpIr2aeY4IHfFiGREnq0GNxknIImY5iNmPdlW7UwHa9TnZsznt+2z/OrB67CUoN/yvUQKzX5t6eUsyd6Osu1GhKTNx0rJjjk+pgVn5l0rOgZbP9ortgVK2uhWlnhcwXJGNv7VA+Ife93KmWEwCP/cFJwlu1VwzxbIRN8pg4QfYu3cA/cUvBpABcR0rfw44cD4x4ONvHJb5OAclgrw+jkhHqggSvYqbxkZWhAhTS1njsabG3mRNOtEbOjHjRvZWCohZ8oaKnEnp1QmUIUfIaQO8uUKv1vBdehKv3vRMdvOx/HD2HorXL0O1LI0ag+1t653RN+0B4bQIVnfFTqfMGph3ZHdn/nLzNzBhVBGyoU5HWOL9WiIWFvnJGIc1yrPT9thp9ZUd9q7FvqJO+qUL2reu5dHQ2TJnpslNBBfTIHmhkjXc6iNgyT0lSvHVppZbzzhLPyTtwC0ELdGlbmXm4hA9O/r3ymTUP96321bP3Q5Zure5tuvLfg+71Qb9PPfGP17vlj3206AXHX/KAsybHaSeU3rsAlx9tdHHzBbMFx6v0cmcnXBTFi+AVoDGCEUjHwugVUkvZAJ5Xo5mI1xgo3cqBz0EmYtLHg0UIAI8PveWgsLm1r3cHBHbpzKxC3hw7idJz5MbraWr3BrEbgcDAeMTxqhv/c/KgbRsazlKGuINaoXk0YNxkZiCdW7MaE1lxgC1WkOzxiGhUBzYFHk945/rCeUFGodMzKRXc2eBbOZIvY+Pg3USWg5WuVwPqYxqkBc6cGdJw6Cz3f6hZuGKnu5Ok1Un+ssiI8UxDDhGdDYn9AuEcqpebKVsq6kVKvpXQ0FXYuRNwdXN69KWLeMeHLQZ0Ga+K1Vgl+r4e6UhW+00PLGzN8DBv1WCGensCuPJQWnid3ap7c7ywyJKuR6/2rHO1NJ8DnWh8UfL5BmviQ0hgfPLmZDadmNjI1s1GomY1KzWzgw9OAtnUQQxdppwYjZIiYKC90Ydt3+757t595WYzCUzsqFfiwIEME3ID4DpVGQp/hfdNKnX29X3YCsa9GOrWX1fz5IPySqcdnLTj9YJwEqVTww34xIUA/SFuKq27xwbrgM4Tx4p87P9INt/jW86ohYnqiNl1F8eUzUO9xeKXhxWg76q7O8dhKSonEPfiyxtCfVKhd9yL1P2O05LYrWxJLk0RvFp0n4Fdmo503+NIt8gU49iE8coJzNpx8yU2j1Pus3CwMEkU+X8mpcPGMw8VD4PPxIc5J0HPtXBe6IczjKeIMQr09pML9ZcJi0pfMitHPyIqBayzb7ma+g8x7QYxcDHRMmkXHsId5xoWVIBauMD3mMzYjxodZUsktl43rnD+IUJW00xKzvyBxhdkJS9WhIZiTpkHlCyhA5PXt4QiatAVRmcJv+QGPoVJoHpN2Wn6Fi69RjoOY5E6Ovw1rLJrxZ5hphhArGwvmoNniTFFk21mqSXOjOO55DM3eZPNsT5m2cTeYxxqbFEbvtNBL5xq5vOwsXKzMCY83aredH7TOxZyoMx6hTrIUONMEPGczjSXHQ6KFt8ThL/xIhYoddu4oyanYYaeOkpyKHXYqdtg5hAsnG8087uPBb56IjU0Xyl30zq7euxGrTT7MJ219uJRmY/BwMWLl2dUar/Rw5jlv3asCJkbem+nIzrog1a3kZQPmm7GyDfxBE7WPocF7hbLpU0VD46R9ZSXtQ7n+ttZ1irCMVxxulph9MsDsyHsXp+ByNK/ZSph9qfcl44/q0NSlrAXHJonYCw2YCKWYOZmxY8lbN/nzAY2ZZGXMBBXpaGzE1Nk2xAnXwLDJr62S7uBqET9gxuewLKPaue8yZC/kxgq98fx/B5UmnKg0YQG28EaiHOuU62z85bH+d+fyZyWjN5XNIZV9pp/L0kMO0WyZqWzd0+H2yl94YJC5HqFCbTOqtKFB4xZAHVxDUOKNIYRL7VBuns8WRhEk7odPcT/ijjygx7mQPCaF67CKEBwbleD4mf1WaarJd6kvVwk9VsriPgoOYnQOh0Y51qtuGrFw0IYsr1XnmKUNea6zgI7dyUrCJysyf6qaAj32kZFKres1bu2xs6YkWHPXQh7MCqerenx4meiDMXnIvIhxiYiBgKjhu/zx5IpUYOqrXRf9c1PhVoJWrhrVEIlUEfgM5ucuy/GSiY5PERKKwanFxelO8wLIesxkgg2PxrPSltRJ2PeMn4jWvQPvnRZkVKJxEye23lbcJy/qvr5DmDNjVCyikdgy7zfj/f1Rnun1Mn3Q/dEOh6SEm26MOhN16oAv44PM4R1Z8Nnh8AOrO8FgbYELNvw2bG2qn9pDTfmlwMQuCy3d3e2K0ShgWDZX78x90sWVFXwshuyNosLnRzdUYPDdNkYU8XKhzzNO3ukSVGaFIhzmTZ+FO73TrliY9j/F7z25uvWmrJYrpyDlHl0s0Q5VX0RZkJGmyL2qHOpJBYL1sSbESi0EiuddG6vNfnRWmyh3NXuss5pQ2UeJij7iMtInWN+ZVZJbQsezeK7Jpvd8FRq9G9fLQ4q6JTokye/UuXUgNC3KS1EZHj0cz9d94xRByGVaC9CkSD3wiqUndgyD7U4RVR85mQmXt57mcnK4CUlJklPZ6/WJ1KDioIlY/HXh7Bb8A6wKZqei2COfdNtJoeIWdOF4JVYoLk3xlFBDkXHUT2Ue5SJr52nnYYgTaBvtdfChTzYF4C4YShFH20EDV+F0doPo7Cu+QVfmqMONNtJxp9LR817EeIEfwaHl6z6CuTcmwdwPKpUqp41UqixcILrSgOhGBaI7FZeVM42IXqi0rEqlZW3jq+eZBnHzB21pJPcy/vmbGCczfzASve5Gom/PAeIY86109TCnDBkcYlNJJ5PWd7SE7x0l2twoMX4rAD1JUheHgTtMHzIH3FoDOG2fJpIJTbp7LveJ4e1TQ7/JGWbemACgjRcLleYuW2juvQmgQjOOtO4D6Q/s8EHijlpHmUJtjQIbsRGdb4TJI+e1yOiPlC8kjRXfD/6oLPZzp8vnnRT2plxCrTpU+AFpWC8jdWbmHCZY4RCxdAqIBbmbfOPk0EkcdmNx2JXMYb9xQew3Fon99mVPClmDQvmiB4VP39pxHSg6Nvzo5D0aIvrEEDF/LWlcj5F9kSWNX3JH4/tZ7nCTXlG6bt6SFMvhkdLBwtoXLpLf9yD545UTU97FEeQeg+87C0cmcwD+JWtq4VlTKz58ilVu4qXdwT9wUMl2CiH8nIQci7dZqOLFHuPFDf453NT3mMPmWp1iw/hFk6qyWP1Xmd/ArJNcrYoPCUMf6rEoc2ysfbyx5oldHcN0TSiYzC7C4bNbFGE2mlnG8uYwriwyVYezaRdficptl2h4p+/4pR+4WsFC7zsaHEfciR1pAHAn3jqihRuVBulTlGeL6wEIcd+jkgje9Jigpsfw0wIIrHhb6/sY/4GDCg/LCxZ8xM8Y3fJH7AFZ98l0ENZf45furAB/pDUg78sfZCrXIFe4gmTHJPTWcYNneNQSeOKWtNZIMvpGlAXL/vjiFf8JDF28bSw5Ks5MH5TMBC2UAoup49ddWRCHghQknr/egyMVnk548U2ozUd5qsBlSGerKVVMrEYVEyvUNHJu7c1MMbEWpphYKytcURtTTKwHLPidiRWJ2ZXU0NvAZ6kpeUKMLA8pRpY7tfW7xMTIiObCTTMUUppBOssVyNKfqQXfhYM96b3MA8F/ZHK5t0HcySUuvuhC+GV8tXvVxLhu4CENLJP1yoVW4tgF153xkIYHWzgCY49SpInK/QVERtspMsbFfzWSglk4GmO3QRCetF5ocZCU6Gu930uMIZ56WGjqoX2kHl6X5iR8/BGUJ2VBnhyrPUpJIV2/P8YV0nj0ZagLfKZS3nZShQw2rbEiCt2G+QOnRcu86Jd2ylXC1ex0p/plG7Ng7jRpLWBS8YWmzXkONqJJdmDTkAqZJlRBqAQ8kYApXH1xRV5c4IFn3UO7ysbRtJzZB56C+YjobzRARM+FJYGG/lrF5TqSmOidSvqDxOcKiokr2cVPrR2usOELt3wTFgcjrzxvzTaWslmUrZyarhJTFKPhxuEvaDm2Zj5rgoW/4dsCi4qB34w68zB892MReRjWqWGnvdunRHXG8GDDIx8d1PwZVR7RIGmtVEQcoD2mKe0R1ERbYmq1TWCFdfiNbgorpOOomMF66dlq6Gbx/D3NnNDq2ca+4VtDnzdnNHhreK65wePL8+XgreG5hocii85XgyeRZUwlLBMafn1IKmFQw4dFd+O6C5yrumee6l6o7oJKVd0bTXU/qN4CQMPvfW1F8Dw3R7P3cDwcQA7mcD5cVuqBYoo9nnwuRK9C5UWLGy5ZoclfbnZZE9VIMNVL0v/Ideok2E8pG1cpd/QujOSSM7q4bcH/zcSS60KkmqTHe/xqcWRFhNuWuMlmE1YVcyGVRva6pcwWnBQcKuBNwt8Ey+TUdcFjy+OLrZtdEo3iRbhe/yBlpZUjv2vY5+BCArMqR4zvWZmm2kesa05xp/oxHH6+RT4iZH6TYbNH5UayGzcwfpCsKE5K78bFZcGdciHTQoZGFSmIHQwcTCTIHEStFDnvdX3kwmQJ5wozfzkK+alXp3Dkcru+0pI4dWTKEcs7Bo0Cwydo6nieUsfDgpzNkxZKJgWwlSaX2065/BbOtpZGLWSDJPLfWQfmYAWVC6CuM5OQNCFkK5zsRkTy6N4faPGozkRHVwTurqS4bgeRXivHLKExET2aJZ/vpQDyvZ1HAKCz56g/pQlelccR2m96nh4OKe2BTV8myezvHRrj68R3lBHPS6NG5Ftl8bYbNSLfDrxKL6Soj8/4TlLTOwaNQ8FbO/D0Oww+4AMGjcMXXAYny2WqBQK9Zc5XQ89g56uh8PeAO6NOuDPaY7kz3s3dKomwkDvL4fTcRnJoeGe5DMsPlePSeNJeKsem8bRc47AWnl5s45g1nsSQRnJrpN5yAplvKsmq0X2lcL60BZEKAf9NXXdi+NNaZd2JYX0aBy4Y56AdI+I4KUEkQsRxkkk8hK4BTYVatqFIXffFlRletbEDqi7xxTMO8S8hpw2rN8RJ1gvvOWZWykJIZoueo8fSzr4RkwXQewgOA7EOrlpH9pDUL0hCpNLGm8ZXzwtcCwfxCKgj0OoCpmj8VjS8ZAWhrYd/AX16nOhcRpALpYPl+nJ3YoIAWEIc8+W+saIFwbPnsIkOYSF43CxSWQbAQq2EjDQjYA2R546cnDi1JtcYcOGAiZg89q6Bb8rUkbruqQzzI4Vm7JghBeWCGLg1aOsI/yTHrrXh4KGxCemgGvJKwl104yy54Ea0saivuC1tvLjNN1mFKnmK43AjFiThZiBxCDOBfHAxjS0sFd2wyx4XSMcdVg4qEKkmuLsj5vKYMdpNsmRg70ciAxLknEKkTJdH5Joz0zhYqY0itTKtggtOjzTta64H1Z4HWD165sEmG+13iNejg1eac3e8cxFFXGDNN9r4Wl4rgZmcTQHej55rsFUKcKhzvY1UA6Mci0iKrn2krcihAx/BhJZHeSeRd8Zg7se80RRwlXSoaICpJAxjOuC4qJM8JjePGtSOhv9o5cjX79joApS0wG6OXL0k2WgOlKRMmpMktPc1dK3OtBpKQnzHF0sVlm1RUoX3i3neJyepwd0/Y+ZFOpgwKkEqQH67kc+9FXOOlKeP7QJFAg8yL64NvZEulnNgLnrxStGCuosrQ0uSL5ajuiFFFuyQZ8uhN0SZbbNqE17L4yFJWBHoxlZxfKfc7LjazDFlWjj5X1h4DA0ZNnti27tlI8MxCJ5+rrYcXAkMt20KCbLVG8cLFOCW+3ILVuouhTwe07Jhsxsql0JlcEulzmqkUTOXgg9PmC1WSvJsvn/j+o/p8q3EH9OeHrJ0cutjWrc8puMFPL5zD5B5j6iCF+IxYZdGg13qalnl0zcoJGlL2rnHWXlCjxdX7m7CyJudnQ/u8BxvvitI0AjgxduAG3aAGha8wlJIz/7OBlMT7v4ZNwEK3o21Gt+4ddEHis6LJMjJDDw7NFhOOf59jtZSLnQ3aaXWxmjD63g4qYt0vZrBKSYjES17qykOExltr3Viey0POQXTLdtr2TkFix8MnLcDzjvPGIW6Ia7U2d/O7fXKIeKx9tT9TbBtO7j4J90UZ+6muHCPLpV21Ggbt6hyUDfnmqibc/mU5xRV7m7deLv1rfvrlV1xoR4jKm3v/9m3190NcaKeJT77/rp3lLB9u3Wb2K3rQ+7W8506/mY1OElnOacCL/KC3B/aeEeymH5fVZql25+Cacu+OtJO/R6fhG/fxwVGgnfZjBeHYUG+pdep2xayUOUkd86e+qbxzWbhBJA7s+a6cFYaX3/DjwjIThwKT09VQIUbRWJ/QPAT2XiYrqRWjkLFGUUmYo5nuWPve8ZTnqTyKIuGRrVSIq+XUwFtcOwTaZJCLUSW1kYlw/YdgROTO0qkNNo3AhwYJPrxma8nXwupVqpjvbJCPbwatNU8X6oxbVd2UD1hjj/dQlwg4aTSCoc51JkHuG1N/znMAMukmqhbh5Xt0Bnt9DDklZl1ctgBme/LXKDUe505MdHnWZipq6kCp98lpUazI5+YHdlDsqUjJM2FwdR4I7AwptpgpExTNeErM6uyMFAbgzQ2F4ev1H0ftBpygRlM5OLwspxpGHCVjUuDFV+grdJckuc8Rd9ik7xNDAbrznzXHNL6aSYYOZ7IwRsQr4yQDBwhxadgsb+gCPiOVTcuveWcannRvLtSvsDZ8xiuVyuJaFo4gyIjg6/jkMIFDHZgJmfCyD0WNv56nqdnRirkLlu7yWnw65m677JTGbGKz885g6aJd/pYw5VO2opw/rXcOXMo75V+w7hr3YK77jaKO7c6PZN6s5VKtJbgLCr8OzrvrHS4aSjyzhxUsQqDWp/KVRECThaWrRNnWUf7yblN4Ave3sjzKedP6fXMZZ88livTYgmzr8+/JcfGJvIEHwciX5AiMGd1nKhQHDVKqj3vwEWLIwqe3kmV5qc4UY/RrFd8rXiDue1kVxutwfwDK3RDZbmGu6Wp9mGAXN25kSqO6wwZZ6rDTE0OpTr8fa0FR2pyoNVxyGVtyO/V6YAbIVRbuOo67a26RraKmVVMLp2ua6O1ZjuLiQmhqG1n7fitA/prlVnwjHOmC6l8vNfwnKjt07KrL7p8myc0fX8sTV+oeZBEjYNw0yBGTYMoVaf3zmqVVXPpnOLoeCck/IQOaa6JpegWXse0r5MK+4keQR7QNEU/zQn6K+yBqY5p67/QSumFnMIYRXcowT9w4GonqYvawxhWFcCuEEKlqu6UOtUWyBysbMdtMdwRD03NS6hK0wmVo+in3ru/oBMyMUo3XsZDYKERjnyERNOdOqHNPO9mgCTGVQwtU7VXK1R51CquZ3I0+DjTxg6uPJqo6A6XnfonV/dzgOYTsu74ouA3WQ7meV9uz8u+UBmkzE/ort72KXZ+wFtamW7DyokqZKI2mIiAy1UDs5E0t8KpnT7vqCssTf4Wj5LlwunAo6rwkbXb1qghINL3pMkEH4wVk+UBie56ecStbSRRvifxU5XDkmlpvlKoOcNSWVpRacw4ZTmYMcMTfX08h/I7R03vhCkreurKQTU99p3NY/GlTIgv+av48sXAuL5kFpdR1Relqi89Laft1HKOhcTfFrnFNskt2pdIdEEYikku5NyZOFFsyjyBiEuTFi5OeioVORCIjs36jabNCpQKVyCaUiz96c2VAPDKdmbh1LkMPc1chp6WnQy9FX5WUHBqrJybUlm6YZEFY84pR1JJ8cWVqoXB5KyL5Xyn4JN3SlWFK/rUXeJU46pJBzdsB2wF82mqiiSw5ChCznVnrs8+aRDPN5IY8fyj7Mk/ylT+cSU06JBDPd1ZGorAubUEA/fHU22Bc2uIpBKdmKdQOtE25vl8nwKX875QWy5Uwa1uFNwa+jgIJGcANeWWw5G3RMqoOSfx+D5GOA7AbY88hp+LOu8WKAvmhJDstGC6C61faFDWghsQdFrEL22fqlqosmfdi4Ote2XPqltF22osVRVOUCopQdnLYxZSeFDJCcrlzGRXAa4HVQFuiZYWpKJhmzL15KlMpE1mIhc025aZenIr+xTgOqEAl4esYypcBbjEFOCIxEaSf2+yg5JblquYUvd1fmXiIhBb4SJ2Py8T1+YSdJFg37puO1LACw4M9M1dSoHzJ96lFFkcH8oFyaSJB5EVXIDfEaaL17ApjPfz5ZZT694biKSb4xJm2ZqsrPC1C6sL1eNS/8EV4/Fu1Iv1hNX7TUrF3Xr1yWYL0ntMxEUa366hspks5hekgDIq2yKla9cvvZEkbFI8rndTeeIyY4VUSE6Kx3VlbMOVZpIg62HhOuOSOxlBO77WiuxkU1CMnSK4jiN0B7KDj9JmA+fOaIKNC2xVOPTIFFgTJLBGh92xdyLDAm5MVp0JTY6vtuJ6JUlb9TPJhqut8qJq55JnSEQUUjCTpa/qHn01omcVp5YxTgXa3omRkVB6KWuJ1Em1c2OGtLR9fZILSuoY7om73EFdNfZbHXhbFti047VxUm3obfncoNr3wihJZ43DZCvOPkVItUwCbIWat6IqbOyWjiqx4/GlB1XYsUIRVWBjX/F1Mq1NkmmX6KyFio6tTDpra0xybDtw1iuFQ+tRcmybkK7rY0nX3YK5jQqO7dSefKMokjeqOYU7bYaK4c9Hgo07Bz6mTw8fR24KRwSP544E5u8FlIYpgVwmGvoAuTyuj4jjILVl+bw7yBMSEqxwhPNO9EUac3olBxw4IDFmO40vKribfjngrL3eHEWLJY1U9Norn1GIHqSk7HLv86xMR7c24KjB4rza9WqW4NqXwc60fisTO9P2kKbKiAlmITFv8x20CztXJoTHYibMqUroybRimU9OayQ5Xbmek7ZgOQHqESKbbAlaOCOmV72vsnj6TgtRUlmvrlYh6MxRwHfuezMJnuCcrWt3U103cp6lUcHMcsCQYM7uNXX2wkJNvCsXE63GdAOoc+LWyvFuWvRkpoV6+qnUms+p/e3NyBvc3rnMEvVcZkLrM4UZOsa1X1rQfTl+xuqdycth9Q70vhwLh7zR8Ucnjj/HYx1/4sRI3dn+ZQuSwriCgCUCFO6gnjKa7x3TKi5QUHmkgQ36sbOtae7EM9MyJcJVLObq32YwYVMnoNGpz3FYHueY0+tLmmqD6+tRwKFm4nTXcKGHc6iJH8DwFrjEOuQ495DT25AvQHzn4Wzq1ONjZopGigRpEumQ05GftMHuQYCWhofTaMcgnzoGrRCYjKd27T8HLZ1GeXKXFaZAZZV6GKXJXXbg573RCc3iJ7Scvp7QaCe0Hst+ISpwA2IUzis+xuOkTj2U+apdKnVfJtxa6jGz1BR2fi4SgWNEbIuDauKkKluLhYVcLDyHHZk6+n7aQmEpuxuSpVJS7lPV30Tb4EE9TWriViLLJ+0wVsVLOmLlBsY9Dzv3PJx3jgIK97C9UEQBHLbbWhvtcP2Dkca+NgUlDls7WFKxkUA+dcx892mH2hCMw5d2ZpdF5N3P3FN8QURgWy6uGAwEGg1XbAft9O4J2JFbkGgCnrWd1lfqBkc+x/QO5yRhgxQTJhkZp5o4t1jC75y27l6y1lG/k9855RG3Tog0o3mX89WUGXDNeJh0Xx+Ej8dpPjFOk68Q3U8G0V0i3zqVfJupuFrocJ7PC0UDgXgYbZjHDx7c5pARG3f0C5vXrdyDYktyJ7GQS4nnDAwDgC5iqbu4rLybn1uoY16BTUG+xdIw0fsLU6JC6Z60wHqlhhBvxBTiTXkGh/MReUTawcdbPC5vl0BQuGErbKYlg/d3Zqg1zLmHMFl60HJeka+JJVICqLDGWzO9zaY7Sa5GSgIpC+/rqPQHTLpy3EdccETteP5X0SuPTsOIQqIdVIXCE7fd2oULIXFdMOKOHeSLjsCx+WGBsB0RDjwjntgoDxj0BHrFf5JDL7oBQ9REGqDF2ffAPK33+WSB+zrHl6rgpbJgwPFKTYgGfFE9vQcO3FNwc9nY2JwrLSGYG16ovAULLFExryScVDsmbG2GchdlurwLSqWJvBMOs29jPOBoYDhGAV6I8ZbKDFeWxgHYKofrG+5grujD7BwtJxyBUTkY384PYYWfZT7+rQKwvefF1k6i+M61pQbmVOdLQc+paC/qFPAbQPSu6L8t0Wpcm2wtMIbAvb5cndr93rQFZZUD7n3iAA9/hBpsQ8gkju+t1xoL2xCiJN+AgpNJGN9bhzF8CBXOfChwRD5/ncbEPB/OxDwfGbhhz19lYQKjj4oDo0fGijxhrNCHNFb4lpxST2jGgu1O6iqOi6PQCI4USBJqcXHqrNaQ9s1gICkoebCKi7tuBLi4mGaWyHHUm7GUc4+ZKeJBQZ0PAuWdIBrZWsoqlZX/DLov2BGpgxfS1LSQH4uFdISbYVIq6gcyYaQJQVoXW1tnM1d5d+aq4AnV2B+oSBu3kdqSe1WpCutPNAJFjmpECI8ih8UyU/xhkwBLim0sakWAFhOl0nnBXsCxVlwo7LqcMpKeWGttwVowflsPVkwu4JXxhIO2xvU1gmO3kP7l6MMnRaR920d3dd/ZS51J7S66as24CFUWTrqpW6bdOA6FslzS7H/NUb04J7zllePSmBD4lVTW6yTXRkfSxXwaGg765UzlaeeCGx44Lc1hE0JunLB44VgzUrh2lspTL8IsaQGMFxZ9T4txqnxJNgyn2jCcasPohV1LxZO94/ex0dTtcuC6+1jU5wnIVTZL50qVzquxBOnqTKpfzUyq35TLou+MqHsbp9venu+DWWjdYE9gDlovgt/sHOxIjn0fWT3JqbMaemZidSX33jc0E5LHenCZ0IPtIbmVe/RgD8e5bSFxDTQLRDKZTmJW9vTJwtXYK09jb1Tx+qCK11N5emHH6ZUrEBsrTG+zWfolJTwvoCR0GiWB6L0T0vin1nuXIuZ4g8CFapWIarFsV4t1t3oOt//eWPW/wg3Vp96HX7jie90c316oFAj+gYMU4S4cRVdXovNL6rNStXEzlt6sJI22p03mBfLGPDTZCje1bZUkh5dlOmQ3r2sHSwJWUhb+08iyLCEWJy+7wdWq43fG4fLRHbqssULyMzVeXjnCtzJ12Yv34IBlXpL+2gtYC5VivaK4kjRWm9JYl0TLvAbRnvRg4ZJrYG8DCLDnMfASU2CpMfCMe5Fk2osEy7IRyVc4Mnj5o0i2kbV9KwC5ZPi8E1q+7MuYl0oVsxs+cLJ5UEg5SEFx5aTvz7Vv54Txu0FxxVv1xhgCQ84SURk4PHkKSZh5s75eeFaAujVLXhtVcD9oyfRES6YLS7ZvShW+DY+hjzPuzg2lZ66qXriaf6XK6o0q+R9MWf1ITMn/kH0ifZ0Q6f0hRfpGouHnznKGGLNvlRvTbiTp3TrLQQCc8xcKR7MbR3l/Glu2mPQe8QRUbji7kbT33gsVhHFz8UJxsaKQxPcbnWb/ezcOgrOPVBYUEsu+W9ghjVxZcCwk40PvJhailnODExapjv+9sk2GTzNvmSHdD4WkwPe+foqPZK4/y2tqfMGFoQzGqcOWpTGaHm6aKBD3PiiElC1Sfc8vZbRKceVo9ROdGwvS/XljubNsqqxAtcbfi8JCLpXleLVddERoTLWPG7McSOQf3K4OX3mCeiSqLGsFQZOJccXbghAMPtYdFFT3A7vs88804zVEnK5I7y1XqXYqb1zOgx87CUiZXLOUV2gjJCE/zuRAdP04mmIlSg2AuPKCYXT8PcEDDAoR8OMOLq7QH2qyyAdu7+RI+b3ulcLlbJVFx9pQmjaq/3RBp0cwW2UGI2kXzrJCimF3LJilYiAOmkLvYZhMgd2ip698Lnutf53j30/RroDs9ZSTa/htrbbXAVUdGUInUkBbo/CYWmDnakyGj11pwIRd2z63VD32cX9aYiIpmuDNRByx/pan1Prw72EoqNQcd1xSFXvbQ9C3zntbqc7b1jbaS9tGCM+RYFzF8CPDafuRxXWflfQgEXoKh80fvkeODBurxmsXphnzqExb09Gm98oWmXkeB8Oa29FIU8JNoqfrCf7EyIF9pCTF/wAwBJZkVGiQJKcyqCRl5AxwwSQo+CY99uHhts7Y+vh0ZH4ALukAf+wiFfSwUSUwABcRYAJ+0U6gsJ1uDDUQdIDikcXxcUroyygwFvnc0IP5Wc7tJwJvPi+uDfazXKwH4f/PX6vCIdrza1M0NnuxHFLhdPFKDfxBurgydKN4sRzS4nTxQtE+zYsrQ/eCNfBDDgP6y//+DRu5j9uE+zivu49PjMMzvuNL8zLgPo7YQZXjPO5xUoyGFfCdVIHMlaQKlSJQgZ1JotK/AvPFg5rBnmKBvX+wC8mP3BsqiVLHc1MssPdPdWHZkTtscMnwgIuD+updWwU2CEJyHfc+zYPJu1Yk+iajSE77ViYeiuVP9VBcIn5xrW/Ge2I77Rmbdz5jdz8Ul57YjfWMPTY+YyVxH7LCe8gq9yFr3Ies8x6yu5+K6HOsch/+ux+LoQdZ6JG4sI3QhXqK0UNWJx6y9SHLivMWOPWELX8nVtu5COgVQPXYfAaRYp3zVJapOuMVvvSBRM+ccDqdCHTI1kCR6NZ+XVsIc4QorvgJN3T9KxEjEt1ad7YZ93y/0qg8Yyh8O9Wvmzb63xV+qKVgd3EkdS13Dsb61gE7Ks/CqQsopZB1HMrM3hRtn4Wg12jXqG7OMOixz7VqkOVaWXnasAPWlAoxNaN2G9oCJnScE83AeENJRcThXkOrzO5Ba7ClnJR87XiUfIEVGIu5Bp4wdudkWG/SuTKuV8yhSQ4rp9p7neh0M5pSHZ9VWAHV3tf2YMH4Mu7lGo5ebGL00h4SOaZbRi86JXfEYTw6v3mDfiYuQs5UFalwVSTkd+L8ZXLPfwcO01HAdbqx3GVhIiM7JzIJGsjE5bxlGcUmihUw8tnpCUW31I71lEghS5HSaGdyOfCs+RjUlOAzJWfm0nsTVVmnd91TLtYrMFGHe0Y43WK9c69Cnutor1jgMX2+VKOexvWgHkUT8JiODkjGG3AlFYEZdxjSyY7hwxC7k+BhnZiqFWabuFU8kMkcexhp7NG5Nkc3ajY+9PnEoe94SL2dxZnWKc70EuXYqQjmTAUT4921NcCsWOjhLdM9vDjErG4xhtscrRpHGAv87a8sF5zMAasjY4yyfHgbAMMzLlYVEFMdhlDF/kBdIHePT7ONS1YVHAqY7zRutcPUUF0AKf2e8jnFrY5g/3NQYZ9jqo6vlmwOw8ujI6znglu6xovXNTzrFlldUPwrXjKdySr707cxgp4zwXmtOzR3j78lRkXDLgCsDZLg42oNF1kduVo4DB/xV02WTc8AsVcA1Uj3dNziNM94dW6AyXWjZc4N14/2dU9f5KVQ2GDoWtEc/sWHVmlKWqhBfB7a9Ou5I/C2HFTudk5UjCwOsk7js3zWhcO8zJecZuMyybNTLac5L0C+Y7BqKqY1163Y8LamfG6AV9/igcQCc2RSkGUdPQ6kyMGrKFX4LbaZle2sUGrJJB1YOexqi/52wm3TAd9yQSk0twB0GG+ajhCNE07IHddYCzVkjFGuJ3iNc23T3RRz5aJ3a6bFjrEeaaX1SM9Qx6m+63rsQ2ID2OqeN7kJVbRuC3h4YEjbjNKETuVadxzSLTM1+Fb2YStb5VArS4xwHeU1zo8328EhTwaJ1+GnRAlspQ6hwRMP3UuEPYwFPzx8K1r2yPCDJLR8YbERj0qtXsfhhTGadbh6ncSu/u0ualF2dUBYuxDuYa/JxbXBZpMWxVAH9lg1iqCOPZ5alEIdez5dLIcQBS9eKLrbu7gydLt3UUU+I5pZ94UCXhF/urKRdy3HvWslPZZ3rdsAjZRcXRT5wjPJQiOy0cgv3rkyPH9UVvNHHyh2JNhLt04eNXBfuKcS2dIjC9XOVP7axXrQUOXitfqC3SjGhcmcGuEpR1rv/HChWBeSFU1773YjU2yOjZ3GOMXF7yyjWTqVdgvmOguXT9q8u4jV/1xilrSwzBzj9WRc/93hUev2GuuK+4UUTurmw46FX1QgTW0rhtGI0mWyU2M15VUzB25Us80gJFuww+zwqaVwmNoQ3un5PQA41CwMP7CG5znHiy/0Se+xqGn8u+dCNd644hosiTaTo3F6wIV260h6nkmsK5IL7X3md7x4pRqCvJHIVx7znSH+mo7bKtHS+lk2F0JnZRlKssEYMI7DrJO2BgxmYck4b/S65MoUznNjdjJnvD2aZBvrsKSKIIPA0+dRURpIrRipfVhj1jBErb+2ni0AWULrF9xpM35zEHnj/DNsTNx8OZjdATXB8PodHrDwp1OV2Vlc4R1fDjrAAj8lHnR/BXdJOegAWwFQ1krryK0QrygH3V4Bm8a5QSix+lybAIdWD1q6wtDDkGMr+NU/lTga3MJcSAatW8cn0WDh6nw5eOp+vhz6nDhfDX1OnAthKKarjIXrMiFcy0MK120LadNPFy9UYbtxSzhJRJYbF8nSw8VUKi4G9cmcrwYnzRtZ3a6RVvEF28d4daxcIcpbiescBWwwiThDShDDEqHD1DuLuHJbRK7A/Jm2mz9zAHvHC48S0uF5/rIhddsmXrbqTiqO2oKFZrz63MHtgo+hJHym9WgthVVqpiyiyu2C2BL5zrSFZjIOQ+Wm4XfH4LxqaHWhtp+Z4uaY8bUabuvhSNK9b4Fl/Kcuzwv2BXfWcJTpCeZN4zJvDq4P0RPXiePC8Q5e69nKwug4SY/uyuXOwvIUkiKtYZOWFxaap7A4Kb9H8wy/KA2H8Yyv/iDRc0pMoQ5vlyPvTBZkt3zOYVl0VA4v1XDyT0y3HsdLLl555vJxcEfkuf5bge11ivif84o3crz6gTc5bqGfxF2Lc6p23yxXdLMLpix4HmN/wKn1EAV1OZ77GdB43vlqlWLh67yXeGo8+Ac2tk3CsndkbaG6EWGlO3GV7oClrzpOlIlp3+Ftu0xzEnFpXHjSuN45LJR4qWc98MqT4eItMS15TZaYM5MQw6awz2b8vhjsCBqv7dOI3xB7sWVm1Usr+3xHrTJNi60xnUbtoJoWD3hScjrIOQQv4Bl+LIdS+3MOo5bfQpiTm6GgpCNTMU9HWXNyzl59xU8CEeL60daoVcP1D3iYEYsSpwQ/qgxorsQTqw78Nd2HuUJwLHr6tgXZLNHmqMDiGT5wRb6yZ/SWGUrXeH30qRl6cxpM/SIBXnp+XZGEu2wD3a9w21Zodai15KLJCKoKunhPIRDSxXXlrQwyEXT0cvHSkejAxStvgPPj4qoOYM58flWaqLwxhW+QiwItmBF2sR4cwrlYD02qXSyHVtJdLIcK2RfLoRHri+XQJ0kdG5HrhBFZH7L9MXPbHzO3/TFzzMZCBWmlzmoFr3qiWI2VStLqtcUdZLJUghywUYpWxAEbJWhF5DYP+ohXinvEcXfAqm9Y+i+0UPR6kmt4gCFrmxFHwq240bQg4Y99orKI9JmTaFTJBCQjE5qcJeUHLcRzAKKxDbewal7opuLY9TdqMwsEyJLBl3uKjxVmJlF9xBr0EQ+bI1OobM9wShLHQxz3NlomQZcKx0DsXLRVtymy4VAkkmW4I9J5wmFCY1+lUJ0BDg3sEotU1aG9uK+hgyZVJMeneiEDkReWXyAgiwA4qxRmhjXYGbajUjHOOUowi2i8tnAcXBozEEcNBOPrNqadC29VNG6rom2hXvUqwTKMV9U7uULRsApFLmspkVhIQRcxRqEqnD5FmQJmAdL+TJsi5AorHDtx/E1GenCMZiz+qInv+g3GByyh5Q9Y5ebYiHsUqgWdOGYcDuwzneUalik+VvC3Kq83JHbZShWFf+SgB3hBVp4iZHWpVvVgVlk11Eu/zskyMifrvUg9UgrbhFJoZ6vdvn/9+j9+t+T/efH2L9+9ev3231+8+cuv1/aXp/X/8rfX//jxxau/v/z5V/Hvu19+4v/zxbfvlk4Xf/v+/wHMJLB6
</pre>
</div></div>





Revision as of 13:12, 9 November 2017

Balancers are used to evenly distribute items over multiple belts or multiple belt lanes.

Belt balancers are usually used to balance multiple belts before or after train stations to ensure even loading of buffer chests and train wagons. They are also used to even out production by placing them in front of large machine arrays with multiple input belts. Belt balancers do not balance the individual belt lanes!

Lane balancers are usually placed after production to ensure that a belt is fully compressed or before consumption to ensure that both lanes of the belt are evenly drained.

Lane Balancers

Input Unbalanced, Output Balanced

These balancers evenly distribute the items onto the output lanes but do not "pull" evenly from the input lanes when the output is backed up. They are input unbalanced.

The last two balancers are a special case, they only work when there are items on only one side of the input belt.

Input Balanced, Output Unbalanced

These balancers evenly distribute the items onto the output lanes and "pull" evenly from the input lanes when the output is backed up. They are input balanced. These balancers are not output lane-balanced, this means when there is less than 100% input, the output lanes are not balanced.

Input and Output Balanced

These balancers always evenly distribute the items onto the output lanes and "pull" evenly from the input lanes.

Belt Balancers

These belt balancers are all tested to be input balanced and output balanced. Remember, belt balancers do not balance the individual belt lanes! Throughput under full load is 100% and min throughput with blocked in- and outputs is also tested, it is noted when that is under 100%. Tests are done using this handy tool by d4rkpl4y3r on the Factorio Forums. When there are multiple versions of balancers that have the same stats but different sizes, the balancer with the smallest footprint is shown.

Blueprint book of all balancers from 1 → 1 to 8 → 8 :

Blueprint.png  Copy blueprint string

0eNrtneuuHEd2rF9lwN/sQa5LXkpvcnBwIEgzhE1YQwoUZXhg9LsfacRNymZV5srISJJS85chjZW7+lJdmSsivvjvZ9//8POLH9+8fPX22+9fv/6PZ9/894d/89Ozb/7v7/7x1//t5d9ev/rtX//08t9efffDr//u7T9/fPHsm2cv3774x7Pnz159949f/+nFf/345sVPP93evvnu1U8/vn7z9vb9ix/ePrs/f/by1d9f/Nezb+T+/54/e/Hq7cu3L1/8tuK//uGf3776+R/fv3jzy//DaK3nz358/dMv//nrV79exS9LpufP/vnsm5vc788/Wk3B1U4XM3CxdP/1Rf/rjfrmd+/r82c/fPfLf/bLv5Nv5dvvv/vhu1d/++XPPH/2ny/e/PSvNYq7ek0lefvwDqZfr2zbp/M8vMhPP/7w8u3bXy74w3+uX/qHe5POcnb9Ej9eKP01P322H6/k6IXJ+Jui8W+KPNQ35emz1dhXpfPZyrvP9kb6Fbhp58rmvyvvv8PPn/395ZsXf/vtfyona2f0dju90kK9eSv6Aaf/+br1ZO2GfNqnV3mgH/bp74Ik8MM+X03A1f7XN8fP1p65Yd495f6ax5+MGPqxn34lxdHP53y5DL6jOr4XBb19Plp79ISw+BNC158QJz/uM8+GywfMjieETj0hVn4rjfv4gh8Sp6tl3sOwzPxMdFeqtN1Xw/f8o1vL47eWPdbm692tZdRby7i3llFvLbtTdly9N65wf+IqvJzcV3dZ729+jW2z0J+Rky1W78ftt5U+2rqU2HbremXpvlxRfFs53rrBB5TIvtDX94WFs/O6xTezBbwrU+DCK3VL38ArPb8XDs4B4ex1a0I2ETr+sBQ++dv4+KHooyiytgG/D+dbUQe/BedPX/RQY+P9UI7vh/zrUWNhbmlTZ43Onajdp6dTD0GZewgq0H6DNHzqfZ6Nejo7kG0GYS+kE09rQb/BibUdsvDD34C9ZWINmyS8j8jIt/v8Yy/4UGw8wKvoZxVZvMEzMs7258OscfTkK/EnX36sSYBRJwHdwcJnHwUk6ihAqKOA3hs3fxP3PtXG3c8c0HhSSYLL06XJfXUG8PTVjT1SFRmBnL9o4+riwJn/hh76rxfW/msuvF1TxTc3491II211lPTA0+jimjbufvBDv2w89Ad2l2rw+Gf8pjg8toqNAcZ3yLnthqRknn5WFVZgz1ZDx2mBDWCNbwDLY40+/IveANoXvAG8fck7QKHuAHsfw9QG0GY3gPhmUhb0M2QDuLZVNd6G0qnOL1zrucny3m+wjYQHg0KSc87NfcHdXuCrfb43SKwZmQptjKW6cXzT4k/v+qca36Cmmu1e67hDmvfcHjp+dMaY374a8//MxnyevTrwtZtw+R8PajQbn80XVNvh4iuj5+FecPc5BPZpFeqpoVJPNI1mzzpY+3wnjaQ1Gnw4OaL8/Mut+Obf3rz+5f8Of3ufP93hr39+++PPv/4QUI4p4dwGdmYR6pklkY4sOndiWZjsnRxawh/67z7zl6+uPvLGzWwcG8exiRWyoMyo4246pXnHjOkg/KM40XQm9CLpqxXty8hFciMviRR5SZOJlxWzV6UeSBrtoHTsO9pMZGjkz5VgDjyV7fwAMn5I64ISsuOwowuHHXhC/9kVlzR12kHn8Y16Cjuop7ApwUXZektPVcIFlsRy2Vh8uO+kU2LQdxP4aTo/4mrg/FDIeg8vKgobTm/cwE2C/DfjD00Gn9n1OX9KyLkyupHcOGF3FXD46UmowOkn7nXWjO8P5Gp70Pk8C5WUoJWG2FDueEEPpofcEtOPZALsAc4PWwo7m4aPB8NHCOOdpIN3qMxRMHQmmib6WBKKnx4y9AHsWl3feeYdRAr3IFKpB5FGO4gc1IMIoIx0TyJCDfkJum+5ReBAht7FCcrsR38iaP6tCR/cVMzTZuIGlWaYwiUR2sGh67/Y6efiOdimVI+pM8ZnPwfEjywZvTkjb3DBAyEcc348vKLU7Kce1EOFJZqt0YSzuy6cU0FHTTD7VHv1iTCt2EOmaVkcifjW//Pv1ZXlafq6V/8D7tVh1UC5qsEffGfO2juXrXv+rzvzL35nvuJ3m0JjPW0ZQxt937l7ztzdc8FVN50W3bRyp+qNl+s5qJtUXBbTeVXMhCou6MajgO2KPutM9Fn8UdJT/RyqcmPUXzfnXzfnXzfnax4cqusmtMvNvF3ufkvNkg+m0Zh7x85dbuLucoW75VLelsvwbctoMzCRpJb8kIVEAQ+s7sxBGvXhspBNBPqKxuz20DmxsKKgSsbqA1VG4d8/FmefRdZLc2A9IltVqSkLHLDPwsrKVFIRtJjhewwWWqW3Wtv1RLMZ5IOUry0va1Ey/ZK5rgEOQMbjYMPfrcLta6nUny3ynH1hzD7+/U9wFhxJ3EPdIs55bq1E7afiBGNQgFOn59jheZ0Vm7orVR60vXEM3c45ROtC4j76PYqwBxR+SNmd2//COVa/r6rhhu3HB8xt0XubaiTeC1P73BueeIpOIz+h27dBcTZM6HozdbpeqACAunGf1nCj+XDtY2vKNHEjsbJzEiIL91uKYG5WsPlIoDd894WuPpM20MrsLk5QoUwHfTNhAod3VDQjUHijrwk3Vi9DWLWLE1JezhPCOLIK8iTcP7hAdaQ48MO1llr32UcU7qkwlh2/s423RN14w64euzNN+DZnm7cp5lV7yEGl8waV5AIqpw4qnca8MirzyklzSAuLcY3rCDl4pJQSGZolLt4Nl9UuNkHKY8mKcRVEp4LZIEaODD74GUTOMAkpYOY1nIQcL95ITVmsMqvenjiRurGCaNCpo+mktXsBwUudYrLCsr39c2ZifCELvvQ/pg5yp3L2/rrqx79o9lXORj3cxAvs2jvDJuMqA6Y0fcm4soA59XSSWeKXFVxSOFmt7hM/bKO2ZugNo7OnvRlu6vGQIem8fNp77173OxWDmqllJOfLYTUPTpVeMlV6yVT4qVPhp75FXbHTxZ10sttDRw2f7uInZwMNJnE9M/YXMtD2LLvi1HE9UrgxJ4GaVey+2lnXHx9owqNE49E6lx2miHSJo8BpZGKnQlHTzsh1gmhIkSckDYXUO4PvLIrUg5XGMm5gyoTEk3KODHMO7/XYES/8dAPGwuZr6IDRL4Zl/FEaWr8wZ0JWqSH8RsURHMyUgyPmysG37PJDcuGcks9+glxZKLGTtQ0+gZ+t5rjwPfzZ8IwuHjhueEEmWOdOQTgqcC5rQvCQ86UO5jAso3Tvc71VgH3y+XWhYJDz60JvEA8kNh3e2do8xD7DBS/nExP0sXS+GjrnyGOL9QTMXNPXSNp6DzHJ7ZGoqTSZYq6sgDUKFSBSd3qYGy92eHzaWpzEO46K8ILd+kl7ZqYqXwdwGadSn6emfzN0amT4Z1P1r8SqqEadc0zN/wZ24rSxa0morgNlRfJhrnnaMtcLH9E0bwwgbi82InMTPy3VXKjdRopJ1xN8b5WHlK6/zO1rd3P9ufev3OygUfevSqIG3pS/YTXihjVOq0ZACnAV9WabckD9jG5QSVE3ZH6f8D17wauQyB7lLzL3d653FpIr2aeY4IHfFiGREnq0GNxknIImY5iNmPdlW7UwHa9TnZsznt+2z/OrB67CUoN/yvUQKzX5t6eUsyd6Osu1GhKTNx0rJjjk+pgVn5l0rOgZbP9ortgVK2uhWlnhcwXJGNv7VA+Ife93KmWEwCP/cFJwlu1VwzxbIRN8pg4QfYu3cA/cUvBpABcR0rfw44cD4x4ONvHJb5OAclgrw+jkhHqggSvYqbxkZWhAhTS1njsabG3mRNOtEbOjHjRvZWCohZ8oaKnEnp1QmUIUfIaQO8uUKv1vBdehKv3vRMdvOx/HD2HorXL0O1LI0ag+1t653RN+0B4bQIVnfFTqfMGph3ZHdn/nLzNzBhVBGyoU5HWOL9WiIWFvnJGIc1yrPT9thp9ZUd9q7FvqJO+qUL2reu5dHQ2TJnpslNBBfTIHmhkjXc6iNgyT0lSvHVppZbzzhLPyTtwC0ELdGlbmXm4hA9O/r3ymTUP96321bP3Q5Zure5tuvLfg+71Qb9PPfGP17vlj3206AXHX/KAsybHaSeU3rsAlx9tdHHzBbMFx6v0cmcnXBTFi+AVoDGCEUjHwugVUkvZAJ5Xo5mI1xgo3cqBz0EmYtLHg0UIAI8PveWgsLm1r3cHBHbpzKxC3hw7idJz5MbraWr3BrEbgcDAeMTxqhv/c/KgbRsazlKGuINaoXk0YNxkZiCdW7MaE1lxgC1WkOzxiGhUBzYFHk945/rCeUFGodMzKRXc2eBbOZIvY+Pg3USWg5WuVwPqYxqkBc6cGdJw6Cz3f6hZuGKnu5Ok1Un+ssiI8UxDDhGdDYn9AuEcqpebKVsq6kVKvpXQ0FXYuRNwdXN69KWLeMeHLQZ0Ga+K1Vgl+r4e6UhW+00PLGzN8DBv1WCGensCuPJQWnid3ap7c7ywyJKuR6/2rHO1NJ8DnWh8UfL5BmviQ0hgfPLmZDadmNjI1s1GomY1KzWzgw9OAtnUQQxdppwYjZIiYKC90Ydt3+757t595WYzCUzsqFfiwIEME3ID4DpVGQp/hfdNKnX29X3YCsa9GOrWX1fz5IPySqcdnLTj9YJwEqVTww34xIUA/SFuKq27xwbrgM4Tx4p87P9INt/jW86ohYnqiNl1F8eUzUO9xeKXhxWg76q7O8dhKSonEPfiyxtCfVKhd9yL1P2O05LYrWxJLk0RvFp0n4Fdmo503+NIt8gU49iE8coJzNpx8yU2j1Pus3CwMEkU+X8mpcPGMw8VD4PPxIc5J0HPtXBe6IczjKeIMQr09pML9ZcJi0pfMitHPyIqBayzb7ma+g8x7QYxcDHRMmkXHsId5xoWVIBauMD3mMzYjxodZUsktl43rnD+IUJW00xKzvyBxhdkJS9WhIZiTpkHlCyhA5PXt4QiatAVRmcJv+QGPoVJoHpN2Wn6Fi69RjoOY5E6Ovw1rLJrxZ5hphhArGwvmoNniTFFk21mqSXOjOO55DM3eZPNsT5m2cTeYxxqbFEbvtNBL5xq5vOwsXKzMCY83aredH7TOxZyoMx6hTrIUONMEPGczjSXHQ6KFt8ThL/xIhYoddu4oyanYYaeOkpyKHXYqdtg5hAsnG8087uPBb56IjU0Xyl30zq7euxGrTT7MJ219uJRmY/BwMWLl2dUar/Rw5jlv3asCJkbem+nIzrog1a3kZQPmm7GyDfxBE7WPocF7hbLpU0VD46R9ZSXtQ7n+ttZ1irCMVxxulph9MsDsyHsXp+ByNK/ZSph9qfcl44/q0NSlrAXHJonYCw2YCKWYOZmxY8lbN/nzAY2ZZGXMBBXpaGzE1Nk2xAnXwLDJr62S7uBqET9gxuewLKPaue8yZC/kxgq98fx/B5UmnKg0YQG28EaiHOuU62z85bH+d+fyZyWjN5XNIZV9pp/L0kMO0WyZqWzd0+H2yl94YJC5HqFCbTOqtKFB4xZAHVxDUOKNIYRL7VBuns8WRhEk7odPcT/ijjygx7mQPCaF67CKEBwbleD4mf1WaarJd6kvVwk9VsriPgoOYnQOh0Y51qtuGrFw0IYsr1XnmKUNea6zgI7dyUrCJysyf6qaAj32kZFKres1bu2xs6YkWHPXQh7MCqerenx4meiDMXnIvIhxiYiBgKjhu/zx5IpUYOqrXRf9c1PhVoJWrhrVEIlUEfgM5ucuy/GSiY5PERKKwanFxelO8wLIesxkgg2PxrPSltRJ2PeMn4jWvQPvnRZkVKJxEye23lbcJy/qvr5DmDNjVCyikdgy7zfj/f1Rnun1Mn3Q/dEOh6SEm26MOhN16oAv44PM4R1Z8Nnh8AOrO8FgbYELNvw2bG2qn9pDTfmlwMQuCy3d3e2K0ShgWDZX78x90sWVFXwshuyNosLnRzdUYPDdNkYU8XKhzzNO3ukSVGaFIhzmTZ+FO73TrliY9j/F7z25uvWmrJYrpyDlHl0s0Q5VX0RZkJGmyL2qHOpJBYL1sSbESi0EiuddG6vNfnRWmyh3NXuss5pQ2UeJij7iMtInWN+ZVZJbQsezeK7Jpvd8FRq9G9fLQ4q6JTokye/UuXUgNC3KS1EZHj0cz9d94xRByGVaC9CkSD3wiqUndgyD7U4RVR85mQmXt57mcnK4CUlJklPZ6/WJ1KDioIlY/HXh7Bb8A6wKZqei2COfdNtJoeIWdOF4JVYoLk3xlFBDkXHUT2Ue5SJr52nnYYgTaBvtdfChTzYF4C4YShFH20EDV+F0doPo7Cu+QVfmqMONNtJxp9LR817EeIEfwaHl6z6CuTcmwdwPKpUqp41UqixcILrSgOhGBaI7FZeVM42IXqi0rEqlZW3jq+eZBnHzB21pJPcy/vmbGCczfzASve5Gom/PAeIY86109TCnDBkcYlNJJ5PWd7SE7x0l2twoMX4rAD1JUheHgTtMHzIH3FoDOG2fJpIJTbp7LveJ4e1TQ7/JGWbemACgjRcLleYuW2juvQmgQjOOtO4D6Q/s8EHijlpHmUJtjQIbsRGdb4TJI+e1yOiPlC8kjRXfD/6oLPZzp8vnnRT2plxCrTpU+AFpWC8jdWbmHCZY4RCxdAqIBbmbfOPk0EkcdmNx2JXMYb9xQew3Fon99mVPClmDQvmiB4VP39pxHSg6Nvzo5D0aIvrEEDF/LWlcj5F9kSWNX3JH4/tZ7nCTXlG6bt6SFMvhkdLBwtoXLpLf9yD545UTU97FEeQeg+87C0cmcwD+JWtq4VlTKz58ilVu4qXdwT9wUMl2CiH8nIQci7dZqOLFHuPFDf453NT3mMPmWp1iw/hFk6qyWP1Xmd/ArJNcrYoPCUMf6rEoc2ysfbyx5oldHcN0TSiYzC7C4bNbFGE2mlnG8uYwriwyVYezaRdficptl2h4p+/4pR+4WsFC7zsaHEfciR1pAHAn3jqihRuVBulTlGeL6wEIcd+jkgje9Jigpsfw0wIIrHhb6/sY/4GDCg/LCxZ8xM8Y3fJH7AFZ98l0ENZf45furAB/pDUg78sfZCrXIFe4gmTHJPTWcYNneNQSeOKWtNZIMvpGlAXL/vjiFf8JDF28bSw5Ks5MH5TMBC2UAoup49ddWRCHghQknr/egyMVnk548U2ozUd5qsBlSGerKVVMrEYVEyvUNHJu7c1MMbEWpphYKytcURtTTKwHLPidiRWJ2ZXU0NvAZ6kpeUKMLA8pRpY7tfW7xMTIiObCTTMUUppBOssVyNKfqQXfhYM96b3MA8F/ZHK5t0HcySUuvuhC+GV8tXvVxLhu4CENLJP1yoVW4tgF153xkIYHWzgCY49SpInK/QVERtspMsbFfzWSglk4GmO3QRCetF5ocZCU6Gu930uMIZ56WGjqoX2kHl6X5iR8/BGUJ2VBnhyrPUpJIV2/P8YV0nj0ZagLfKZS3nZShQw2rbEiCt2G+QOnRcu86Jd2ylXC1ex0p/plG7Ng7jRpLWBS8YWmzXkONqJJdmDTkAqZJlRBqAQ8kYApXH1xRV5c4IFn3UO7ysbRtJzZB56C+YjobzRARM+FJYGG/lrF5TqSmOidSvqDxOcKiokr2cVPrR2usOELt3wTFgcjrzxvzTaWslmUrZyarhJTFKPhxuEvaDm2Zj5rgoW/4dsCi4qB34w68zB892MReRjWqWGnvdunRHXG8GDDIx8d1PwZVR7RIGmtVEQcoD2mKe0R1ERbYmq1TWCFdfiNbgorpOOomMF66dlq6Gbx/D3NnNDq2ca+4VtDnzdnNHhreK65wePL8+XgreG5hocii85XgyeRZUwlLBMafn1IKmFQw4dFd+O6C5yrumee6l6o7oJKVd0bTXU/qN4CQMPvfW1F8Dw3R7P3cDwcQA7mcD5cVuqBYoo9nnwuRK9C5UWLGy5ZoclfbnZZE9VIMNVL0v/Ideok2E8pG1cpd/QujOSSM7q4bcH/zcSS60KkmqTHe/xqcWRFhNuWuMlmE1YVcyGVRva6pcwWnBQcKuBNwt8Ey+TUdcFjy+OLrZtdEo3iRbhe/yBlpZUjv2vY5+BCArMqR4zvWZmm2kesa05xp/oxHH6+RT4iZH6TYbNH5UayGzcwfpCsKE5K78bFZcGdciHTQoZGFSmIHQwcTCTIHEStFDnvdX3kwmQJ5wozfzkK+alXp3Dkcru+0pI4dWTKEcs7Bo0Cwydo6nieUsfDgpzNkxZKJgWwlSaX2065/BbOtpZGLWSDJPLfWQfmYAWVC6CuM5OQNCFkK5zsRkTy6N4faPGozkRHVwTurqS4bgeRXivHLKExET2aJZ/vpQDyvZ1HAKCz56g/pQlelccR2m96nh4OKe2BTV8myezvHRrj68R3lBHPS6NG5Ftl8bYbNSLfDrxKL6Soj8/4TlLTOwaNQ8FbO/D0Oww+4AMGjcMXXAYny2WqBQK9Zc5XQ89g56uh8PeAO6NOuDPaY7kz3s3dKomwkDvL4fTcRnJoeGe5DMsPlePSeNJeKsem8bRc47AWnl5s45g1nsSQRnJrpN5yAplvKsmq0X2lcL60BZEKAf9NXXdi+NNaZd2JYX0aBy4Y56AdI+I4KUEkQsRxkkk8hK4BTYVatqFIXffFlRletbEDqi7xxTMO8S8hpw2rN8RJ1gvvOWZWykJIZoueo8fSzr4RkwXQewgOA7EOrlpH9pDUL0hCpNLGm8ZXzwtcCwfxCKgj0OoCpmj8VjS8ZAWhrYd/AX16nOhcRpALpYPl+nJ3YoIAWEIc8+W+saIFwbPnsIkOYSF43CxSWQbAQq2EjDQjYA2R546cnDi1JtcYcOGAiZg89q6Bb8rUkbruqQzzI4Vm7JghBeWCGLg1aOsI/yTHrrXh4KGxCemgGvJKwl104yy54Ea0saivuC1tvLjNN1mFKnmK43AjFiThZiBxCDOBfHAxjS0sFd2wyx4XSMcdVg4qEKkmuLsj5vKYMdpNsmRg70ciAxLknEKkTJdH5Joz0zhYqY0itTKtggtOjzTta64H1Z4HWD165sEmG+13iNejg1eac3e8cxFFXGDNN9r4Wl4rgZmcTQHej55rsFUKcKhzvY1UA6Mci0iKrn2krcihAx/BhJZHeSeRd8Zg7se80RRwlXSoaICpJAxjOuC4qJM8JjePGtSOhv9o5cjX79joApS0wG6OXL0k2WgOlKRMmpMktPc1dK3OtBpKQnzHF0sVlm1RUoX3i3neJyepwd0/Y+ZFOpgwKkEqQH67kc+9FXOOlKeP7QJFAg8yL64NvZEulnNgLnrxStGCuosrQ0uSL5ajuiFFFuyQZ8uhN0SZbbNqE17L4yFJWBHoxlZxfKfc7LjazDFlWjj5X1h4DA0ZNnti27tlI8MxCJ5+rrYcXAkMt20KCbLVG8cLFOCW+3ILVuouhTwe07Jhsxsql0JlcEulzmqkUTOXgg9PmC1WSvJsvn/j+o/p8q3EH9OeHrJ0cutjWrc8puMFPL5zD5B5j6iCF+IxYZdGg13qalnl0zcoJGlL2rnHWXlCjxdX7m7CyJudnQ/u8BxvvitI0AjgxduAG3aAGha8wlJIz/7OBlMT7v4ZNwEK3o21Gt+4ddEHis6LJMjJDDw7NFhOOf59jtZSLnQ3aaXWxmjD63g4qYt0vZrBKSYjES17qykOExltr3Viey0POQXTLdtr2TkFix8MnLcDzjvPGIW6Ia7U2d/O7fXKIeKx9tT9TbBtO7j4J90UZ+6muHCPLpV21Ggbt6hyUDfnmqibc/mU5xRV7m7deLv1rfvrlV1xoR4jKm3v/9m3190NcaKeJT77/rp3lLB9u3Wb2K3rQ+7W8506/mY1OElnOacCL/KC3B/aeEeymH5fVZql25+Cacu+OtJO/R6fhG/fxwVGgnfZjBeHYUG+pdep2xayUOUkd86e+qbxzWbhBJA7s+a6cFYaX3/DjwjIThwKT09VQIUbRWJ/QPAT2XiYrqRWjkLFGUUmYo5nuWPve8ZTnqTyKIuGRrVSIq+XUwFtcOwTaZJCLUSW1kYlw/YdgROTO0qkNNo3AhwYJPrxma8nXwupVqpjvbJCPbwatNU8X6oxbVd2UD1hjj/dQlwg4aTSCoc51JkHuG1N/znMAMukmqhbh5Xt0Bnt9DDklZl1ctgBme/LXKDUe505MdHnWZipq6kCp98lpUazI5+YHdlDsqUjJM2FwdR4I7AwptpgpExTNeErM6uyMFAbgzQ2F4ev1H0ftBpygRlM5OLwspxpGHCVjUuDFV+grdJckuc8Rd9ik7xNDAbrznzXHNL6aSYYOZ7IwRsQr4yQDBwhxadgsb+gCPiOVTcuveWcannRvLtSvsDZ8xiuVyuJaFo4gyIjg6/jkMIFDHZgJmfCyD0WNv56nqdnRirkLlu7yWnw65m677JTGbGKz885g6aJd/pYw5VO2opw/rXcOXMo75V+w7hr3YK77jaKO7c6PZN6s5VKtJbgLCr8OzrvrHS4aSjyzhxUsQqDWp/KVRECThaWrRNnWUf7yblN4Ave3sjzKedP6fXMZZ88livTYgmzr8+/JcfGJvIEHwciX5AiMGd1nKhQHDVKqj3vwEWLIwqe3kmV5qc4UY/RrFd8rXiDue1kVxutwfwDK3RDZbmGu6Wp9mGAXN25kSqO6wwZZ6rDTE0OpTr8fa0FR2pyoNVxyGVtyO/V6YAbIVRbuOo67a26RraKmVVMLp2ua6O1ZjuLiQmhqG1n7fitA/prlVnwjHOmC6l8vNfwnKjt07KrL7p8myc0fX8sTV+oeZBEjYNw0yBGTYMoVaf3zmqVVXPpnOLoeCck/IQOaa6JpegWXse0r5MK+4keQR7QNEU/zQn6K+yBqY5p67/QSumFnMIYRXcowT9w4GonqYvawxhWFcCuEEKlqu6UOtUWyBysbMdtMdwRD03NS6hK0wmVo+in3ru/oBMyMUo3XsZDYKERjnyERNOdOqHNPO9mgCTGVQwtU7VXK1R51CquZ3I0+DjTxg6uPJqo6A6XnfonV/dzgOYTsu74ouA3WQ7meV9uz8u+UBmkzE/ort72KXZ+wFtamW7DyokqZKI2mIiAy1UDs5E0t8KpnT7vqCssTf4Wj5LlwunAo6rwkbXb1qghINL3pMkEH4wVk+UBie56ecStbSRRvifxU5XDkmlpvlKoOcNSWVpRacw4ZTmYMcMTfX08h/I7R03vhCkreurKQTU99p3NY/GlTIgv+av48sXAuL5kFpdR1Relqi89Laft1HKOhcTfFrnFNskt2pdIdEEYikku5NyZOFFsyjyBiEuTFi5OeioVORCIjs36jabNCpQKVyCaUiz96c2VAPDKdmbh1LkMPc1chp6WnQy9FX5WUHBqrJybUlm6YZEFY84pR1JJ8cWVqoXB5KyL5Xyn4JN3SlWFK/rUXeJU46pJBzdsB2wF82mqiiSw5ChCznVnrs8+aRDPN5IY8fyj7Mk/ylT+cSU06JBDPd1ZGorAubUEA/fHU22Bc2uIpBKdmKdQOtE25vl8nwKX875QWy5Uwa1uFNwa+jgIJGcANeWWw5G3RMqoOSfx+D5GOA7AbY88hp+LOu8WKAvmhJDstGC6C61faFDWghsQdFrEL22fqlqosmfdi4Ote2XPqltF22osVRVOUCopQdnLYxZSeFDJCcrlzGRXAa4HVQFuiZYWpKJhmzL15KlMpE1mIhc025aZenIr+xTgOqEAl4esYypcBbjEFOCIxEaSf2+yg5JblquYUvd1fmXiIhBb4SJ2Py8T1+YSdJFg37puO1LACw4M9M1dSoHzJ96lFFkcH8oFyaSJB5EVXIDfEaaL17ApjPfz5ZZT694biKSb4xJm2ZqsrPC1C6sL1eNS/8EV4/Fu1Iv1hNX7TUrF3Xr1yWYL0ntMxEUa366hspks5hekgDIq2yKla9cvvZEkbFI8rndTeeIyY4VUSE6Kx3VlbMOVZpIg62HhOuOSOxlBO77WiuxkU1CMnSK4jiN0B7KDj9JmA+fOaIKNC2xVOPTIFFgTJLBGh92xdyLDAm5MVp0JTY6vtuJ6JUlb9TPJhqut8qJq55JnSEQUUjCTpa/qHn01omcVp5YxTgXa3omRkVB6KWuJ1Em1c2OGtLR9fZILSuoY7om73EFdNfZbHXhbFti047VxUm3obfncoNr3wihJZ43DZCvOPkVItUwCbIWat6IqbOyWjiqx4/GlB1XYsUIRVWBjX/F1Mq1NkmmX6KyFio6tTDpra0xybDtw1iuFQ+tRcmybkK7rY0nX3YK5jQqO7dSefKMokjeqOYU7bYaK4c9Hgo07Bz6mTw8fR24KRwSP544E5u8FlIYpgVwmGvoAuTyuj4jjILVl+bw7yBMSEqxwhPNO9EUac3olBxw4IDFmO40vKribfjngrL3eHEWLJY1U9Norn1GIHqSk7HLv86xMR7c24KjB4rza9WqW4NqXwc60fisTO9P2kKbKiAlmITFv8x20CztXJoTHYibMqUroybRimU9OayQ5Xbmek7ZgOQHqESKbbAlaOCOmV72vsnj6TgtRUlmvrlYh6MxRwHfuezMJnuCcrWt3U103cp6lUcHMcsCQYM7uNXX2wkJNvCsXE63GdAOoc+LWyvFuWvRkpoV6+qnUms+p/e3NyBvc3rnMEvVcZkLrM4UZOsa1X1rQfTl+xuqdycth9Q70vhwLh7zR8Ucnjj/HYx1/4sRI3dn+ZQuSwriCgCUCFO6gnjKa7x3TKi5QUHmkgQ36sbOtae7EM9MyJcJVLObq32YwYVMnoNGpz3FYHueY0+tLmmqD6+tRwKFm4nTXcKGHc6iJH8DwFrjEOuQ495DT25AvQHzn4Wzq1ONjZopGigRpEumQ05GftMHuQYCWhofTaMcgnzoGrRCYjKd27T8HLZ1GeXKXFaZAZZV6GKXJXXbg573RCc3iJ7Scvp7QaCe0Hst+ISpwA2IUzis+xuOkTj2U+apdKnVfJtxa6jGz1BR2fi4SgWNEbIuDauKkKluLhYVcLDyHHZk6+n7aQmEpuxuSpVJS7lPV30Tb4EE9TWriViLLJ+0wVsVLOmLlBsY9Dzv3PJx3jgIK97C9UEQBHLbbWhvtcP2Dkca+NgUlDls7WFKxkUA+dcx892mH2hCMw5d2ZpdF5N3P3FN8QURgWy6uGAwEGg1XbAft9O4J2JFbkGgCnrWd1lfqBkc+x/QO5yRhgxQTJhkZp5o4t1jC75y27l6y1lG/k9855RG3Tog0o3mX89WUGXDNeJh0Xx+Ej8dpPjFOk68Q3U8G0V0i3zqVfJupuFrocJ7PC0UDgXgYbZjHDx7c5pARG3f0C5vXrdyDYktyJ7GQS4nnDAwDgC5iqbu4rLybn1uoY16BTUG+xdIw0fsLU6JC6Z60wHqlhhBvxBTiTXkGh/MReUTawcdbPC5vl0BQuGErbKYlg/d3Zqg1zLmHMFl60HJeka+JJVICqLDGWzO9zaY7Sa5GSgIpC+/rqPQHTLpy3EdccETteP5X0SuPTsOIQqIdVIXCE7fd2oULIXFdMOKOHeSLjsCx+WGBsB0RDjwjntgoDxj0BHrFf5JDL7oBQ9REGqDF2ffAPK33+WSB+zrHl6rgpbJgwPFKTYgGfFE9vQcO3FNwc9nY2JwrLSGYG16ovAULLFExryScVDsmbG2GchdlurwLSqWJvBMOs29jPOBoYDhGAV6I8ZbKDFeWxgHYKofrG+5grujD7BwtJxyBUTkY384PYYWfZT7+rQKwvefF1k6i+M61pQbmVOdLQc+paC/qFPAbQPSu6L8t0Wpcm2wtMIbAvb5cndr93rQFZZUD7n3iAA9/hBpsQ8gkju+t1xoL2xCiJN+AgpNJGN9bhzF8CBXOfChwRD5/ncbEPB/OxDwfGbhhz19lYQKjj4oDo0fGijxhrNCHNFb4lpxST2jGgu1O6iqOi6PQCI4USBJqcXHqrNaQ9s1gICkoebCKi7tuBLi4mGaWyHHUm7GUc4+ZKeJBQZ0PAuWdIBrZWsoqlZX/DLov2BGpgxfS1LSQH4uFdISbYVIq6gcyYaQJQVoXW1tnM1d5d+aq4AnV2B+oSBu3kdqSe1WpCutPNAJFjmpECI8ih8UyU/xhkwBLim0sakWAFhOl0nnBXsCxVlwo7LqcMpKeWGttwVowflsPVkwu4JXxhIO2xvU1gmO3kP7l6MMnRaR920d3dd/ZS51J7S66as24CFUWTrqpW6bdOA6FslzS7H/NUb04J7zllePSmBD4lVTW6yTXRkfSxXwaGg765UzlaeeCGx44Lc1hE0JunLB44VgzUrh2lspTL8IsaQGMFxZ9T4txqnxJNgyn2jCcasPohV1LxZO94/ex0dTtcuC6+1jU5wnIVTZL50qVzquxBOnqTKpfzUyq35TLou+MqHsbp9venu+DWWjdYE9gDlovgt/sHOxIjn0fWT3JqbMaemZidSX33jc0E5LHenCZ0IPtIbmVe/RgD8e5bSFxDTQLRDKZTmJW9vTJwtXYK09jb1Tx+qCK11N5emHH6ZUrEBsrTG+zWfolJTwvoCR0GiWB6L0T0vin1nuXIuZ4g8CFapWIarFsV4t1t3oOt//eWPW/wg3Vp96HX7jie90c316oFAj+gYMU4S4cRVdXovNL6rNStXEzlt6sJI22p03mBfLGPDTZCje1bZUkh5dlOmQ3r2sHSwJWUhb+08iyLCEWJy+7wdWq43fG4fLRHbqssULyMzVeXjnCtzJ12Yv34IBlXpL+2gtYC5VivaK4kjRWm9JYl0TLvAbRnvRg4ZJrYG8DCLDnMfASU2CpMfCMe5Fk2osEy7IRyVc4Mnj5o0i2kbV9KwC5ZPi8E1q+7MuYl0oVsxs+cLJ5UEg5SEFx5aTvz7Vv54Txu0FxxVv1xhgCQ84SURk4PHkKSZh5s75eeFaAujVLXhtVcD9oyfRES6YLS7ZvShW+DY+hjzPuzg2lZ66qXriaf6XK6o0q+R9MWf1ITMn/kH0ifZ0Q6f0hRfpGouHnznKGGLNvlRvTbiTp3TrLQQCc8xcKR7MbR3l/Glu2mPQe8QRUbji7kbT33gsVhHFz8UJxsaKQxPcbnWb/ezcOgrOPVBYUEsu+W9ghjVxZcCwk40PvJhailnODExapjv+9sk2GTzNvmSHdD4WkwPe+foqPZK4/y2tqfMGFoQzGqcOWpTGaHm6aKBD3PiiElC1Sfc8vZbRKceVo9ROdGwvS/XljubNsqqxAtcbfi8JCLpXleLVddERoTLWPG7McSOQf3K4OX3mCeiSqLGsFQZOJccXbghAMPtYdFFT3A7vs88804zVEnK5I7y1XqXYqb1zOgx87CUiZXLOUV2gjJCE/zuRAdP04mmIlSg2AuPKCYXT8PcEDDAoR8OMOLq7QH2qyyAdu7+RI+b3ulcLlbJVFx9pQmjaq/3RBp0cwW2UGI2kXzrJCimF3LJilYiAOmkLvYZhMgd2ip698Lnutf53j30/RroDs9ZSTa/htrbbXAVUdGUInUkBbo/CYWmDnakyGj11pwIRd2z63VD32cX9aYiIpmuDNRByx/pan1Prw72EoqNQcd1xSFXvbQ9C3zntbqc7b1jbaS9tGCM+RYFzF8CPDafuRxXWflfQgEXoKh80fvkeODBurxmsXphnzqExb09Gm98oWmXkeB8Oa29FIU8JNoqfrCf7EyIF9pCTF/wAwBJZkVGiQJKcyqCRl5AxwwSQo+CY99uHhts7Y+vh0ZH4ALukAf+wiFfSwUSUwABcRYAJ+0U6gsJ1uDDUQdIDikcXxcUroyygwFvnc0IP5Wc7tJwJvPi+uDfazXKwH4f/PX6vCIdrza1M0NnuxHFLhdPFKDfxBurgydKN4sRzS4nTxQtE+zYsrQ/eCNfBDDgP6y//+DRu5j9uE+zivu49PjMMzvuNL8zLgPo7YQZXjPO5xUoyGFfCdVIHMlaQKlSJQgZ1JotK/AvPFg5rBnmKBvX+wC8mP3BsqiVLHc1MssPdPdWHZkTtscMnwgIuD+updWwU2CEJyHfc+zYPJu1Yk+iajSE77ViYeiuVP9VBcIn5xrW/Ge2I77Rmbdz5jdz8Ul57YjfWMPTY+YyVxH7LCe8gq9yFr3Ies8x6yu5+K6HOsch/+ux+LoQdZ6JG4sI3QhXqK0UNWJx6y9SHLivMWOPWELX8nVtu5COgVQPXYfAaRYp3zVJapOuMVvvSBRM+ccDqdCHTI1kCR6NZ+XVsIc4QorvgJN3T9KxEjEt1ad7YZ93y/0qg8Yyh8O9Wvmzb63xV+qKVgd3EkdS13Dsb61gE7Ks/CqQsopZB1HMrM3hRtn4Wg12jXqG7OMOixz7VqkOVaWXnasAPWlAoxNaN2G9oCJnScE83AeENJRcThXkOrzO5Ba7ClnJR87XiUfIEVGIu5Bp4wdudkWG/SuTKuV8yhSQ4rp9p7neh0M5pSHZ9VWAHV3tf2YMH4Mu7lGo5ebGL00h4SOaZbRi86JXfEYTw6v3mDfiYuQs5UFalwVSTkd+L8ZXLPfwcO01HAdbqx3GVhIiM7JzIJGsjE5bxlGcUmihUw8tnpCUW31I71lEghS5HSaGdyOfCs+RjUlOAzJWfm0nsTVVmnd91TLtYrMFGHe0Y43WK9c69Cnutor1jgMX2+VKOexvWgHkUT8JiODkjGG3AlFYEZdxjSyY7hwxC7k+BhnZiqFWabuFU8kMkcexhp7NG5Nkc3ajY+9PnEoe94SL2dxZnWKc70EuXYqQjmTAUT4921NcCsWOjhLdM9vDjErG4xhtscrRpHGAv87a8sF5zMAasjY4yyfHgbAMMzLlYVEFMdhlDF/kBdIHePT7ONS1YVHAqY7zRutcPUUF0AKf2e8jnFrY5g/3NQYZ9jqo6vlmwOw8ujI6znglu6xovXNTzrFlldUPwrXjKdySr707cxgp4zwXmtOzR3j78lRkXDLgCsDZLg42oNF1kduVo4DB/xV02WTc8AsVcA1Uj3dNziNM94dW6AyXWjZc4N14/2dU9f5KVQ2GDoWtEc/sWHVmlKWqhBfB7a9Ou5I/C2HFTudk5UjCwOsk7js3zWhcO8zJecZuMyybNTLac5L0C+Y7BqKqY1163Y8LamfG6AV9/igcQCc2RSkGUdPQ6kyMGrKFX4LbaZle2sUGrJJB1YOexqi/52wm3TAd9yQSk0twB0GG+ajhCNE07IHddYCzVkjFGuJ3iNc23T3RRz5aJ3a6bFjrEeaaX1SM9Qx6m+63rsQ2ID2OqeN7kJVbRuC3h4YEjbjNKETuVadxzSLTM1+Fb2YStb5VArS4xwHeU1zo8328EhTwaJ1+GnRAlspQ6hwRMP3UuEPYwFPzx8K1r2yPCDJLR8YbERj0qtXsfhhTGadbh6ncSu/u0ualF2dUBYuxDuYa/JxbXBZpMWxVAH9lg1iqCOPZ5alEIdez5dLIcQBS9eKLrbu7gydLt3UUU+I5pZ94UCXhF/urKRdy3HvWslPZZ3rdsAjZRcXRT5wjPJQiOy0cgv3rkyPH9UVvNHHyh2JNhLt04eNXBfuKcS2dIjC9XOVP7axXrQUOXitfqC3SjGhcmcGuEpR1rv/HChWBeSFU1773YjU2yOjZ3GOMXF7yyjWTqVdgvmOguXT9q8u4jV/1xilrSwzBzj9WRc/93hUev2GuuK+4UUTurmw46FX1QgTW0rhtGI0mWyU2M15VUzB25Us80gJFuww+zwqaVwmNoQ3un5PQA41CwMP7CG5znHiy/0Se+xqGn8u+dCNd644hosiTaTo3F6wIV260h6nkmsK5IL7X3md7x4pRqCvJHIVx7znSH+mo7bKtHS+lk2F0JnZRlKssEYMI7DrJO2BgxmYck4b/S65MoUznNjdjJnvD2aZBvrsKSKIIPA0+dRURpIrRipfVhj1jBErb+2ni0AWULrF9xpM35zEHnj/DNsTNx8OZjdATXB8PodHrDwp1OV2Vlc4R1fDjrAAj8lHnR/BXdJOegAWwFQ1krryK0QrygH3V4Bm8a5QSix+lybAIdWD1q6wtDDkGMr+NU/lTga3MJcSAatW8cn0WDh6nw5eOp+vhz6nDhfDX1OnAthKKarjIXrMiFcy0MK120LadNPFy9UYbtxSzhJRJYbF8nSw8VUKi4G9cmcrwYnzRtZ3a6RVvEF28d4daxcIcpbiescBWwwiThDShDDEqHD1DuLuHJbRK7A/Jm2mz9zAHvHC48S0uF5/rIhddsmXrbqTiqO2oKFZrz63MHtgo+hJHym9WgthVVqpiyiyu2C2BL5zrSFZjIOQ+Wm4XfH4LxqaHWhtp+Z4uaY8bUabuvhSNK9b4Fl/Kcuzwv2BXfWcJTpCeZN4zJvDq4P0RPXiePC8Q5e69nKwug4SY/uyuXOwvIUkiKtYZOWFxaap7A4Kb9H8wy/KA2H8Yyv/iDRc0pMoQ5vlyPvTBZkt3zOYVl0VA4v1XDyT0y3HsdLLl555vJxcEfkuf5bge11ivif84o3crz6gTc5bqGfxF2Lc6p23yxXdLMLpix4HmN/wKn1EAV1OZ77GdB43vlqlWLh67yXeGo8+Ac2tk3CsndkbaG6EWGlO3GV7oClrzpOlIlp3+Ftu0xzEnFpXHjSuN45LJR4qWc98MqT4eItMS15TZaYM5MQw6awz2b8vhjsCBqv7dOI3xB7sWVm1Usr+3xHrTJNi60xnUbtoJoWD3hScjrIOQQv4Bl+LIdS+3MOo5bfQpiTm6GgpCNTMU9HWXNyzl59xU8CEeL60daoVcP1D3iYEYsSpwQ/qgxorsQTqw78Nd2HuUJwLHr6tgXZLNHmqMDiGT5wRb6yZ/SWGUrXeH30qRl6cxpM/SIBXnp+XZGEu2wD3a9w21Zodai15KLJCKoKunhPIRDSxXXlrQwyEXT0cvHSkejAxStvgPPj4qoOYM58flWaqLwxhW+QiwItmBF2sR4cwrlYD02qXSyHVtJdLIcK2RfLoRHri+XQJ0kdG5HrhBFZH7L9MXPbHzO3/TFzzMZCBWmlzmoFr3qiWI2VStLqtcUdZLJUghywUYpWxAEbJWhF5DYP+ohXinvEcXfAqm9Y+i+0UPR6kmt4gCFrmxFHwq240bQg4Y99orKI9JmTaFTJBCQjE5qcJeUHLcRzAKKxDbewal7opuLY9TdqMwsEyJLBl3uKjxVmJlF9xBr0EQ+bI1OobM9wShLHQxz3NlomQZcKx0DsXLRVtymy4VAkkmW4I9J5wmFCY1+lUJ0BDg3sEotU1aG9uK+hgyZVJMeneiEDkReWXyAgiwA4qxRmhjXYGbajUjHOOUowi2i8tnAcXBozEEcNBOPrNqadC29VNG6rom2hXvUqwTKMV9U7uULRsApFLmspkVhIQRcxRqEqnD5FmQJmAdL+TJsi5AorHDtx/E1GenCMZiz+qInv+g3GByyh5Q9Y5ebYiHsUqgWdOGYcDuwzneUalik+VvC3Kq83JHbZShWFf+SgB3hBVp4iZHWpVvVgVlk11Eu/zskyMifrvUg9UgrbhFJoZ6vdvn/9+j9+t+T/efH2L9+9ev3231+8+cuv1/aXp/X/8rfX//jxxau/v/z5V/Hvu19+4v/zxbfvlk4Xf/v+/wHMJLB6


1 belt → x belts


2 belts → x belts


3 belts → x belts


4 belts → x belts


5 belts → x belts


6 belts → x belts


7 belts → x belts


8 belts → x belts


12 belts → x belts


16 belts → x belts

Mechanics

1 full input belt gets split into two 50% full belts which get split into 4 belts that are each 25% full.

Belt balancers use the mechanic that splitters output items in a 1:1 ratio onto both their output belts. That means that a splitter can be used to put an equal amount of items on two belts. Since the process can be repeated infinitely, balancers with 2n output belts are easy to create.

First the belts A and B go through a splitter so that the output belts contain an equal amount of items from each input belt (AB). The same is done with belts C and D. Then the mixed belts AB and CD go through splitters so that their output belts contain items from each input belt (ABCD)!

Balancers also use the mechanic that splitters take an equal amount of items from both input belts. That means that a splitter connected to two input belts will evenly distribute those items onto the the two output belts. To balance belts it has to be made sure that the output belts contain an equal number of items from each input belt.

Throughput

4to4 balancer throughput limit demo.gif

The above collection of balancers often states that the throughput of a balancer can go down to x% which means that the balancer is throughput limited. To be throughput unlimited, a balancer must fulfil the following conditions:

  1. 100% throughput under full load.
  2. Any arbitrary amount of input belts should be able to go to any arbitrary amount of output belts.


All balancers in the collection meet the first condition, but only some meet the second one. This is the case because the balancers have internal bottlenecks. The gif on the right shows a 4 → 4 balancer being fed by two belts, but only outputting one belt which means that its througput in that arrangement is 50%. The bottleneck in this balancer is that the two middle belts only get input from one splitter. So, if only one side of that splitter gets input, as can be seen in the gif, it can only output one belt even though the side of the splitter is fed by a splitters which gets two full belts of input. In this particular case, the bottleneck can be fixed by feeding the two middle output belts with more splitters. This is done by adding two more splitters at the end of the balancer, as it can be seen here:

4to4 balancer.png

However most balancers' bottlenecks can't be solved as easily. A guaranteed method to achieve throughput unlimited balancers is to place two balancers back to back that fulfil the first condition for throughput unlimited balancers (100% throughput under full load). The resulting balancer is usually larger than a balancer that was initially designed to be throughput unlimited. This is the case because they use more splitters than the minimum required amount of n*log2(n)-n/2 where n is the (power-of-two) number of belts splitters for a throughput unlimited balancer.

References

See also