Heat exchanger: Difference between revisions
No edit summary |
(Removed usage tips. Restored old explanations. Removed excessive comments. Merged heat capacity back into first section.) |
||
Line 1: | Line 1: | ||
{{Languages}}{{:Infobox:Heat exchanger}} | {{Languages}}{{:Infobox:Heat exchanger}} | ||
The '''heat exchanger''' exchanges heat between a heat connection and [[water]] to produce [[steam]]. | |||
Heat exchangers produce ~103 steam with a temperature of 500°C every second. | |||
Heat exchangers produce | Heat exchangers will not produce steam until they reach 500°C. The steam produced is exactly 500°C hot, even if the exchanger is hotter. Heat exchangers have a heat capacity of 1 MJ/°C. Thus, they can buffer 500 MJ of heat energy across their working range of 500°C to 1000°C, and require 485 MJ of energy to warm up from 15°C to 500°C when initially placed. | ||
== Calculating steam production rate == | == Calculating steam production rate == | ||
Heat exchangers produce 103 steam/second.This can be calculated by relying on [[steam turbine]] data: A steam turbine consumes 60 steam/second and produces 5.82MW (assuming 500°C steam). This means a single unit of 500°C steam has <code>5.8MW / 60/s = 0.097 MJ</code> of energy. A steam engine produces 10 MJ a second, therefore it produces <code>10MJ / 0.097MJ = 103.0927835 </code> steam per second. | |||
< | |||
The steam production rate can also be calculated using the energy consumption: 1 Heat exchanger consumes 10MW, so it's putting 10,000,000 joule of energy into heating water/steam per second. To heat up 1 unit of water 1 degree, 200 joules are needed, so the heat exchanger is heating up water by 50,000°C in total. But the water only gets heated up from 15°C to 500°C, so by 485°C. So the 50,000°C are enough to heat up 103 units of steam per second, since <code>50,000 / 485 = 103.09</code>. | |||
== History == | == History == | ||
Line 30: | Line 16: | ||
* Introduced | * Introduced | ||
* Doubled the heat capacity of water from 0.1kJ per degree per liter to 0.2kJ}} | * Doubled the heat capacity of water from 0.1kJ per degree per liter to 0.2kJ}} | ||
== See also == | == See also == | ||
* [[Power production#Nuclear power| | * [[Power production#Nuclear power|Nuclear power]] | ||
* [[Steam]] | * [[Steam turbine]] | ||
* [[Nuclear reactor]] | |||
* [[Heat pipe]] | * [[Heat pipe]] | ||
{{ProductionNav}} | {{ProductionNav}} | ||
{{C|Energy}} | {{C|Energy}} |
Revision as of 12:29, 4 June 2018
Heat exchanger |
Recipe |
|
+ + + → | |
Total raw |
|
+ + + |
Recipe |
|
+ + + → | |
Total raw |
|
+ + + |
Map color |
|
Fluid storage volume |
Input: 200 |
Health |
200 |
Resistances |
Explosion: 0/30% |
Stack size |
50 |
Dimensions |
2×3 |
Energy consumption |
10 MW |
Maximum temperature |
1000 °C |
Mining time |
0.1 |
Prototype type |
|
Internal name |
heat-exchanger |
Required technologies |
|
Produced by |
|
The heat exchanger exchanges heat between a heat connection and water to produce steam.
Heat exchangers produce ~103 steam with a temperature of 500°C every second.
Heat exchangers will not produce steam until they reach 500°C. The steam produced is exactly 500°C hot, even if the exchanger is hotter. Heat exchangers have a heat capacity of 1 MJ/°C. Thus, they can buffer 500 MJ of heat energy across their working range of 500°C to 1000°C, and require 485 MJ of energy to warm up from 15°C to 500°C when initially placed.
Calculating steam production rate
Heat exchangers produce 103 steam/second.This can be calculated by relying on steam turbine data: A steam turbine consumes 60 steam/second and produces 5.82MW (assuming 500°C steam). This means a single unit of 500°C steam has 5.8MW / 60/s = 0.097 MJ
of energy. A steam engine produces 10 MJ a second, therefore it produces 10MJ / 0.097MJ = 103.0927835
steam per second.
The steam production rate can also be calculated using the energy consumption: 1 Heat exchanger consumes 10MW, so it's putting 10,000,000 joule of energy into heating water/steam per second. To heat up 1 unit of water 1 degree, 200 joules are needed, so the heat exchanger is heating up water by 50,000°C in total. But the water only gets heated up from 15°C to 500°C, so by 485°C. So the 50,000°C are enough to heat up 103 units of steam per second, since 50,000 / 485 = 103.09
.
History
- 0.15.0:
- Introduced
- Doubled the heat capacity of water from 0.1kJ per degree per liter to 0.2kJ